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Abstract

Topic structure analysis plays a pivotal role in dia-
logue understanding. We propose a reinforcement
learning (RL) method for topic segmentation and
labeling in goal-oriented dialogues, which aims to
detect topic boundaries among dialogue utterances
and assign topic labels to the utterances. We ad-
dress three common issues in the goal-oriented cus-
tomer service dialogues: informality, local topic
continuity, and global topic structure. We explore
the task in a weakly supervised setting and formu-
late it as a sequential decision problem. The pro-
posed method consists of a state representation net-
work to address the informality issue, and a policy
network with rewards to model local topic conti-
nuity and global topic structure. To train the two
networks and offer a warm-start to the policy, we
firstly use some keywords to annotate the data auto-
matically. We then pre-train the networks on noisy
data. Henceforth, the method continues to refine
the data labels using the current policy to learn bet-
ter state representations on the refined data for ob-
taining a better policy. Results demonstrate that this
weakly supervised method obtains substantial im-
provements over state-of-the-art baselines.

1 Introduction
Analyzing topic structures [Arguello and Rosé, 2006; Du
et al., 2017] or discourse relations [Afantenos et al., 2015;
Qin et al., 2017] of goal-oriented dialogues such as nego-
tiations and customer service conversations, is important for
dialogue understanding [Williams et al., 2017], dialogue gen-
eration [Li et al., 2016], and dialogue summarization [Bokaei
et al., 2016]. In this paper, we focus on analyzing topic
structures in goal-oriented dialogues, aiming to detect topic
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A: The release date of 〈MODEL 〉???
B: 〈MODEL 〉 will be available for pre-order on 19

April and launch on 26.
A: How long can the battery last?
B: It’s equipped with a 4,000 mAh battery up to 8 hours

of HD video playing or 10 hours of web browsing.
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A: Can I use a coupon?
B: When entering your payment on the checkout page,

click Redeem a coupon below your payment method.
B: You can check here for more details: 〈 URL 〉.

Pa
ym

en
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A: OK. Support payment by installments?
B: Sure. We provide an interest-free installment option

for up to 6 months.

Table 1: An example of customer service dialogues, translated from
Chinese. Utterances in the same color are of the same topic.

boundaries among utterances and assign topic labels to dia-
logue utterances1.

Different from other generic text, goal-oriented dialogues
have the following three distinctive features. 1) informal-
ity : a user may post fragmented, incomplete sentences with
typos, colloquialisms, or informal terms, particularly in cus-
tomer service dialogues (see Table 1). 2) local topic con-
tinuity: it usually takes several turns to discuss one topic
and it maintains the same topic until the current problem has
been resolved. 3) global topic structure: a dialogue session
has clear boundaries, few cross-transitions between topic seg-
ments, but high cohesion within one segment.

However, existing methods cannot fully address the afore-
mentioned issues. Many methods capture local topic conti-
nuity by employing local lexical cohesion based on word or
phrase similarity [Purver et al., 2006; Eisenstein and Barzi-
lay, 2008]. They do not consider the sentence-level de-
pendencies and are unable to appropriately summarize the
context. Moreover, they are weak to make coherent lo-
cal topic assignment, and generally produce fragmented seg-

1Topic in dialogues can be viewed as coarse-grained intent and
thus topic analysis offers intent understanding to some degree.



ments. Other studies attempted to capture the discourse de-
pendencies between adjacent utterances [Du et al., 2017;
Zhai and Williams, 2014], but less attention has been paid to
modeling global topic structure in a dialogue session. Fully
supervised methods [Arguello and Rosé, 2006], by contrast,
are too expensive for manual annotation, thereby not scalable
to large datasets.

In this paper, we propose a policy gradient reinforcement
learning method to address the three issues. Topic segmenta-
tion and labeling can be seen as a sequential decision prob-
lem, where we assign topics sequentially to utterances, and
previous decisions can affect current and following decisions.
An intermediate reward is defined to encourage local topic
continuity to enforce the coherence of local topic assignment
from the labeling perspective. When all sequential decisions
are made, the global topic structure of one session is mea-
sured by a delayed reward that favors larger utterance similar-
ity within a segment and lower similarity between segments.
To address the informality issue, we use a hierarchical LSTM
(HLSTM) for state representation to capture word-level and
sentence-level dependencies. HLSTM can better summarize
all historical information instead of just using word/phrase
similarity. It thus has the ability of context understanding to
not only deal with informality but also address local topic
continuity from the content perspective.

Our method consists of a state presentation network and
a policy network. As can be imagined, state representations
are extremely important to our method, however, without la-
beled data, it is challenging to learn a good representation
of text. Another challenge for the policy network is its in-
ability of topic labeling with the designed rewards alone. In
order to train state representations and also provide a warm-
start for the policy to identify topics, labeled data are indis-
pensable. Unfortunately, it is too costly to manually annotate
the large-scale data in our task. Although some unsupervised
methods can assign latent topics [Blei, 2012], however, such
topics are indirect and lack direct interpretability for the task.
Therefore, we resort to noisy labeling, using a set of hand-
crafted keywords to label the dialogues automatically. After
pre-training with the noisy data, the method continues to re-
fine the data labels using the current policy, and then to learn
better state representations on the refined data for obtaining a
better policy. To summarize, our contributions are as follows:

• We propose a weakly supervised method for analyzing
topic structures of goal-oriented dialogues. To avoid
heavy manual annotation, we use prior knowledge to
perform noisy labeling for pre-training the networks.
The method iterates between refining noisy data la-
bels and finding better state representations and policies.
Thus, it is scalable to large unlabeled datasets and the
idea may inspire other real-world applications.

• Our method is able to capture local topic continuity by
an intermediate reward, measure global topic structure
by a delayed reward, and represent dialogue content and
context by a hierarchical LSTM. It generates not only
locally coherent but also globally well-structured topic
segments. Experimental results demonstrate substantial
improvements over the baselines.

2 Related Work
Early models for topic segmentation assumed that a high lex-
ical cohesion is expected within a topic segment [Hearst,
1997]. However, most of those models put much empha-
sis on the lexical structures of a dialogue [Webber et al.,
2012]. Such superficial signals like words or phrases do
not consider sentence-level dependencies, leading to a frag-
mented segmentation. Other studies aimed to discover latent
discourse structure by modeling message-response pairs [Du
et al., 2017] or drawing a distribution over topic-state links
[Zhai and Williams, 2014], but the global structure of a ses-
sion is often ignored. Though TopicTilling [Riedl and Bie-
mann, 2012] used latent topics obtained from LDA to repre-
sent sentences, such topics are still far from an appropriate
summary of the context. While few supervised approaches
cast the segmentation problem as a classification task [Ar-
guello and Rosé, 2006], it is obviously expensive for annota-
tion and not scalable to large datasets. Recent research [Song
et al., 2016] has demonstrated that word embedding provides
better performance in dialogue session segmentation, which
inspires us to apply a state representation network for better
summarizing and understanding dialogue contexts.

Topic labeling aims to assign a short description to each
of the topical clusters to facilitate interpretations of the topics
[Joty et al., 2013]. In general, single terms [Mehrotra et al.,
2013] or phrases [Mei et al., 2007] can be chosen as topic
label. Most researchers formulated the task as a multi-label
classification problem that each utterance is associated with
a subset of all the topics, and multiple topic labels may be
chosen for an utterance [Ramage et al., 2009; Soleimani and
Miller, 2016]. In this paper, we treat topic labeling as a topic
classification problem where each utterance is assigned with
a topic in a given set.

There are a few challenges for topic segmentation and la-
beling in goal-oriented dialogues. First, participants are dis-
cussing about very specific issues whose topics are restricted
in certain domains, but existing unsupervised methods have
very limited abilities to learn domain-specific knowledge
from the dataset [Joty et al., 2013]. Second, dialogue mes-
sages are ungrammatical and informal, where parsing tools
are not applicable [Du et al., 2017]. To address these two
problems, we cast topic segmentation and labeling in dia-
logues as a RL problem and design rewards to model local
topic continuity and global topic structure.

3 Methodology
Our task is to segment a dialogue session and label each seg-
ment with a topic. More formally, given a sequence of di-
alogue utterances X = x1, x2, · · · , xT where each xi is an
utterance, and a topic set C as {c1, c2, · · · , cK}, the task is to
assign each xi with a topic cj . We treat the task as a topic
classification problem in which topics have been specified in
advance. 2 Note that we do not consider speaker turns, since
utterances from a customer or an agent are in the same topic
space.

2The task definition differs from other studies [Joty et al., 2013],
whereby topic labeling is defined as finding a short description to
each of the topical clusters to facilitate topic interpretations.



Figure 1: Illustration of the model. SRN adopts a hierarchical LSTM to represent utterances and provides state representations to PN. Data
labels are refined to retrain SRN and PN to learn better state representations and policies. The label y and the action a are in the same space.

Our model, as illustrated in Figure 1, consists of a state rep-
resentation network (SRN) and a Policy Network (PN). We
use a set of keywords (as prior knowledge) to perform noisy
labeling on the dialogues, and pre-train SRN and PN on the
noisy data. SRN is a hierarchical LSTM (HLSTM) consist-
ing of a word-level LSTM and a sentence-level LSTM, which
fully captures word-level and sentence-level context depen-
dencies. Since noisy labeling may not assign correct labels
to the context-dependent utterances, PN will refine topic la-
beling by optimizing the cumulative rewards that model local
topic continuity and global topic structure. The refined data
are used to train SRN again to provide better state represen-
tations and then obtain better policies for PN. The process
iterates until it converges.

3.1 Noisy Labeling with Prior Knowledge
Prior knowledge in this paper is defined as a set of keywords
for each topic and is used to label the dialogues automatically.
The noisy data is used to pre-train state representations and
also to provide a warm-start for the policy network. These
keywords are manually selected from a ranking list of words.
Compared to manual annotation, such prior knowledge can
be obtained more easily.

The annotation process works as follows: First, we use the
strategy of keyword matching (KM). If an utterance contains
the keywords of a topic, the utterance will be assigned with
the topic accordingly. Formally, for an utterance x, its topic
label l(x) is decided by

l(x) = argmaxj
∑
i

tf(kij , x), (1)

where kij denotes the i-th keyword for topic j, and tf(k, x)
counts the frequency of keyword k in x.

Second, we adopt the nearest neighbouring (1-NN) strat-
egy if there is no keyword occurring in an utterance. We com-
pute the inner product of the topic vector and the utterance
vector, and choose the most similar topic. The topic vector
and utterance vector are both the average of word vectors.

3.2 State Representation Network (SRN)
We adopt a hierarchical LSTM (HLSTM)[Chung et al., 2017]
to offer state representations to the policy network (PN). A
word level bidirectional LSTM connects words in an utter-
ance forward and backward, and the utterance representation

is fed into the sentence-level LSTM which sequentially con-
nects utterances in a dialogue session. More formally, given
a sequence of utterances X = x1, x2, · · · , xL, the sentence-
level LSTM obtains the hidden statesH = {h1,h2, · · · ,hL}
from which state representations will be computed for PN.
Such a HLSTM can capture word-level and sentence-level
dependencies. For instance, an informal word can be better
summarized by its contexts.

SRN is pre-trained using the noisy data. We adopt cross
entropy to train SRN where supervision is imposed on the
topic prediction (yt−1 and yt in Figure 1) based on the hidden
states of the sentence-level LSTM, i.e., ht−1 and ht. SRN
will be fine-tuned during the joint training of SRN and PN.

3.3 Policy Network (PN)

The policy network adopts a stochastic policy which is a
probability distribution over actions given a state, πΘ(at|St).
State representation is composed of the output of SRN and
the latest topic segment. The action corresponds to assign-
ing a topic label to an utterance in a dialogue session. We
design an intermediate reward to capture local topic continu-
ity since the topics in a session usually last for several turns,
and a long-term delayed reward to capture the global cluster-
ing property of topic segments: the intra-segment similarity
is large while the inter-segment similarity is small.

Action
The action space is the same as the topic space, i.e., A =
{c1, c2, · · · , cK}. Thus, at each state, the action is to assign a
topic label to the current utterance. A topic boundary can be
immediately identified when the topics of two adjacent utter-
ances are different.

State
The state St represents the current state after the actions
a1, a2, ..., at−1 are sampled for the previous utterances in a
dialogue session. The state can be formally represented by

St = [ht;v(at−1);ωk], (2)

where v(a) denotes the vector of topic label a, a learnable
parameter of PN, and ωk is the vector representation of the
latest segment ωk, defined as ω = 1

|ω|
∑
x∈ω hx.



Policy
A stochastic policy πΘ is adopted to sample a topic label for
the current utterance at the current state St. The policy func-
tion is defined by a softmax function, which is a probability
distribution over all topic labels in C (A = C). As the prob-
ability of each topic differs from one to another, the policy
tends to choose the topic with a larger probability even though
other choices may derive the same reward. We thus extend
the softmax function with a β − smoothed version, which
has been reported to be effective in recent research [Guu et
al., 2017].

πΘ(at|St) = softmax(z;β) =
exp(z · β)∑
z̃ exp(z̃ · β)

, (3)

where z = W · St is the input to the softmax function. Ob-
viously, a very large β leads to the effect of argmax while
smaller values produce more smoothed distributions.

Reward
We design two rewards: one is an intermediate reward to cap-
ture the local continuity of topics in dialogues since one topic
usually lasts for several turns and it will not change too fre-
quently; the other is a long-term delayed reward that models
the global clustering property of topic segments: the content
similarity between segments should be small while the simi-
larity within a segment should be large.

The intermediate reward encourages the continuity of local
topics during interactions. Formally

rint =
1

L− 1
sign(at−1 = at) cos(ht−1,ht),

where sign(c) is 1 if the condition c is true and -1 other-
wise, and cos(·) is the cosine similarity between two vectors.
This reward addresses not only local topic continuity from the
labeling perspective, but also the content similarity between
adjacent utterances from the content perspective, where the
content (ht−1,ht) is represented by SRN.

The long-term delayed reward can be obtained when all ut-
terances in a session are assigned with topic labels. To obtain
a good global topic structure, the reward encourages higher
similarity between utterances within the same segment and
lower similarity between adjacent segments, as below:

rdelayed =
1

N

∑
ω∈X

1

|ω|
∑
Xt∈ω

cos(ht,ω)

− 1

N − 1

∑
(ωk−1,ωk)∈X

cos(ωk−1,ωk),

where N is the number of segments predicted by the policy
in a dialogue session X , ω is a topic segment in X , and ω
is its vector representation. Note that topic segments can be
obtained only when the topics of all utterances are sampled
by PN, therefore, we call the reward delayed.

Training
We use policy gradient methods [Sutton et al., 2000] with
the REINFORCE algorithm [Williams, 1992] for optimiza-
tion, aiming to maximize the expected total reward for a di-
alogue session. Denote τ as a sequence S1, a1, · · ·SL, aL

Algorithm 1: Reinforcement Learning Process
Require: D as training data;

1 foreach dialogue session X1:L ∈ D do
2 Initialize a0 and ωk with zeros;
3 for t← 1 to L do
4 Obtain state St with ht, at−1, and ωk;
5 Sample action at ∼ πΘ(at|St) by Eq.(3);
6 Update ωk with at and at−1;
7 end
8 Compute delayed reward RL;
9 Θ← Θ + α∇J(Θ) using Eq.(4);

10 end

generated from the policy, and T as the set of all possi-
ble sequences. The expected reward for a dialogue session
X = x1, x2, · · · , xL can be computed as follows:

J(X; Θ) = E(St,at)∼PΘ(St,at)[

L∑
t=1

r(St, at)]

=
∑
τ∈T

p(S1)

L∏
t=1

πΘ(at|St)p(St+1|St, at)RL,

where RL = (
∑L
t=1 rint) + rdelayed is the expected cumu-

lative reward for a dialogue session. Then, the gradient is
estimated using the likelihood ratio trick:

∇ΘJ(X; Θ) = Eτ∼πΘ(τ)[

L∑
t=1

(RL−b(τ))∇Θ log πΘ(at|St)].

(4)
The baseline b(τ) [Williams, 1992] in Eq.4 is used to re-

duce the variance of the estimate without altering its expec-
tation theoretically. In practical use, we will sample some
sequences τ1, τ2 · · · τk for X with the current RL policy. The
model will assign a score to each sequence according to the
designed reward function, and then estimates b(τ) as the av-
erage of those rewards. So the coefficient RL − b(τ) will be
positive if the reward of sampled sequence τ is larger than
b(τ), to encourage a good exploration sampled by RL policy,
otherwise negative.

The training details of PN is summarized in Algorithm 1.

3.4 Overall Procedure
The overall procedure is shown in Algorithm 2. First of
all, the training and validation dialogues are labeled by prior

Algorithm 2: Overall Training Process
1 Initialize training data D, validation data V by noisy labeling;
2 Pre-train SRN and PN on D ;
3 Obtain refined data D′, V ′ for all sessions in D, V by applying

the current policy: a∗t = argmaxaπΘ(a|St);
4 Train SRN on D′ to update state representations of D′, V ′;
5 D ← D′, V ← V ′;
6 Train PN on D with Algorithm 1;
7 Repeat Step 3-6 until the relative change ratio (RCR, see the

section of Convergence Analysis) between V and V ′ at Step 3
is less than 0.5%;



knowledge (a set of keywords). SRN and PR are then pre-
trained on the noisy data to provide a warm-start. The algo-
rithm then begins the iterative procedure: apply the current
policy to refine data labels by considering local topic conti-
nuity and global topic structure, train SRN on the refined data
to obtain better state representations, and then train PN to ob-
tain better policies. Since better policies can further refine
noisy data labels, the algorithm runs in a positive loop until it
converges.

4 Experiment
4.1 Datasets
Due to the lack of benchmark dialogue datasets of topic seg-
mentation and labeling, we collected customer service di-
alogues from a large E-commerce website. The dialogues
came from two domains: SmartPhone and Clothing. These
dialogues recorded the interactions between the customers
and the merchant agents on products inquiry, delivery ser-
vices, and other related information.

Datasets SmartPhone Clothing

# Topic category 7 10
# Training session 12,315 10,000
# Training utterance 430,462 338,534
# Gold-standard session 300 315
# Gold-standard utterance 10,888 10,962

Table 2: Statistics of the corpus.

Category Keywords list

Service 分期(installment),发票(receipt),
额度(quota),电子(electronic)

Promotion 送(free),活动(promotion),礼(gift),
赠品(free gift),享(share)

Chitchatting 嗯(yeah),谢谢(thank),你好(hello),
恩恩(yep),客气(welcome)

Product Info 卡(card),膜(film),耳机(headset),
款(model),充电(charge)

Refunds 退款(refund),退(return),运费(fee),
同意(agree),寄回(send back)

Logistics 发货(delivery),快递(express),发(send),
默认(default),预计(estimated)

Payment 改(change),更改(adjust),错(wrong),
留下(record),无效(invalid)

Table 3: Topics and sample keywords in the SmartPhone corpus.

Table 2 details the corpus. An utterance refers to the text
from a customer or an agent, which may contain incomplete
or multiple sentences. The training data are unlabeled while
the test data are annotated manually. We randomly chose 300
sessions from the training dataset for validation. The top-
ics and some sample keywords for each topic in the Smart-
Phone domain are shown in Table 3. These keywords of all
topic categories are manually selected based on frequency
and with some heuristics. Similar processes are conducted
on the Clothing dataset.

4.2 Experiment Settings
The parameters of SRN are set as follows: the dimension
of the hidden states and word vectors is both 100, and the
learning rate is 1e-4. In PN, we performed a grid search
for hyper-parameters to maximize the total reward RV =∑
X∈V J(X; Θ) on the validation set V . These hyper-

parameters include: the dimension of the topic vectors = 100,
the learning rate α = 1e-5 and β = 0.5 in the smoothed soft-
max.

4.3 Evaluation Metrics
Our method is evaluated on two tasks: topic segmentation
and topic labeling. We adopted the below metrics: (1) Mean
absolute error (MAE) and WindowDiff (WD) for topic seg-
mentation; (2) and classification accuracy for topic labeling.

As for MAE, we compared the number of predicted seg-
ments in each dialogue session with the gold standard seg-
mentation on the test set T , formally defined as MAE =
1
|T |

∑
X∈T |Npred(X)−Nref (X)| where Npred(X) denotes

the number of segments in X predicted by a model, and
Nref (X) the number of reference segments.

WindowDiff (WD) for topic segmentation is adopted from
[Pevzner and Hearst, 2002]. WD moves a sliding window of
fixed sizew over a dialogue session to compare the result pre-
dicted by the model with the reference result. 0 ≤ WD ≤ 1
with a perfect segmenter scoring 0. As a suggested setting,
the window sizew is set to 3/4, almost half of the average seg-
ment length of 5.02/7.67 utterances per session in the Smart-
Phone/Clothing domain, respectively.

(a) Topic Segmentation (MAE and WD)

Model
SmartPhone Clothing

MAE WD MAE WD

TextTiling(TeT) 13.09 .802 16.32 .948
TopicTiling 3.30 .522 3.67 .602
TeT+Embedding 3.59 .564 3.17 .567
STM 4.37 .505 8.85 .669
NL+HLSTM 8.25 .632 16.26 .925

Our method 2.69 .415 2.74 .446

(b) Topic Labeling (Accuracy)

Model SmartPhone Clothing

Twitter-LDA 25.4 24.5
TopicTiling 27.6 17.2
Keyword Matching 39.8 31.8
NL 51.4 39.0
NL+HLSTM 52.6 40.1

Our method 62.2 48.0

Table 4: Results on topic segmentation (a) and topic labeling (b).
NL denotes noisy labeling with prior knowledge.

4.4 Main Results
Topic Segmentation
We compared our method with the following baselines:
. TextTiling [Hearst, 1997]: It measures the similarity of each



(a)

Model
# Keywords per topic

3 6 9

NL 45.0 51.4 48.0
NL+HLSTM 46.6 52.6 48.8
Our method 55.3 62.2 58.2

(b)

SubSets KM 1-NN

Utterances 3,503 7,385

NL 78.7 38.4
NL+HLSTM 78.6 40.2
Our method 79.0 54.2

(c)

Model Setting
Segmentation Labeling

MAE WD Acc

RL + rint 3.04 .449 59.5
RL + rdelayed 3.89 .490 60.4
RL + rint + rdelayed 2.69 .415 62.2

Table 5: (a) Labeling accuracy with different numbers of keywords. (b) Labeling accuracy on the subsets of the test set. (c) Influence of
different rewards on the performance of segmentation and labeling. All the experiments were conducted on the SmartPhone domain.

adjacent sentence pair, and “valleys” of similarities are de-
tected for segmentation.
. TopicTiling [Riedl and Biemann, 2012]: It employs latent
topics obtained from LDA to improve performance by stabi-
lizing the topics.
. TextTiling+Embedding [Song et al., 2016]: Embedding en-
hanced TextTiling, by applying word embeddings to compute
similarity between sentences.
. STM [Du et al., 2013]: A Structured Topic Model, assum-
ing that any utterance in the same segment is generated from
the same segment-level topic distribution.
. NL+HLSTM: The topic label of each utterance is obtained
by this supervised model and then topic segments are ob-
tained by merging adjacent utterances of the same topic. The
model is trained on the noisy data.

Results are presented in Table 4(a). Lower MAE and WD
scores indicate a better agreement with the gold standards.
Our method outperforms other models in terms of MAE and
WD on both domains. TextTiling and NL+HLSTM tend to
make smaller segments compared to other baselines. Topic-
Tiling has good performance on topic segmentation since it
tries to find fine-grained subtopical changes using LDA. Em-
bedding enhanced TextTiling works much better since word
embedding can well capture the semantic similarity. STM
uses a hierarchical Bayesian model by representing utter-
ances with topic distributions. However, no baseline consid-
ers global topic structure as our method does.

Topic Labeling
We compared the following baselines for this task:
. Twitter-LDA [Zhao et al., 2011]: We regard a dialogue ses-
sion as a text document in LDA, and each utterance is as-
signed with a topic label using Twitter-LDA. The mapping
between a latent topic and a topic label of the task is manu-
ally built.
. TopicTiling [Riedl and Biemann, 2012]: We use topic ID
assigned by TopicTiling to label the sentences, and also set
up a mapping from a topic ID to a topic label.
. Keyword Matching: Topic label is assigned by keyword
matching, see Eq. 1.
. NL: Topic label of an utterance is given by noisy labeling
with the prior knowledge using both keyword matching and
nearest neighboring, see Section 3.1.
. NL+HLSTM: The same as that in topic segmentation. Pre-
diction for each utterance depends on the preceding utter-
ances of the same session.

Results in Table 4(b) show that: 1) Our method outper-

forms other models substantially indicating that optimizing
local and global topic structures can benefit the task greatly;
2) Because the generated latent topics are implicit and indi-
rect, unsupervised methods (Twitter-LDA, TopicTiling) ob-
tain an accuracy lower than 30% on the two datasets. On the
contrary, Keyword Matching is more straightforward and sim-
ple, and can provide a better result; 3) NL+HLSTM performs
slightly better than NL as expected. Training a supervised
model on noisy data does not lead to better results compared
to the noisy labeling since noisy label is the upper bound, in-
dicating that it has a limited ability for context understanding
if without the ability to correct noisy labels.

4.5 Extended Evaluation
In the following sections, we evaluated the robustness of our
method, the influence of different rewards, and the conver-
gence analysis on the SmartPhone domain.

Robustness to Prior Knowledge
The noisy data labeled by prior knowledge provides a warm-
start to state representation and policy learning. To verify
whether our method can obtain robust improvements over the
baselines, we varied the number of keywords in each topic for
noisy labeling. The keywords are ranked by their frequencies
in the corpus in descending order.

As shown in Table 5(a), our method can improve the results
robustly and substantially even if the number of keywords in
prior knowledge is varied. Few keywords (3) may not pro-
vide sufficiently good warm-start for our method, but it still
has remarkable improvement against the baselines (55.3%
vs. 46.6%). Too many keywords (9) degrade the perfor-
mance remarkably since the discriminative ability between
topics decreases, however, our method still has much better
results than the baselines (58.2% vs. 48.8%). In all the cases,
our method can improve the baselines by absolute values of
10∼12%.

Ability of Context Understanding
To verify the ability of context understanding of our method,
we split all the test utterances to two sets: the first subset
whose labels can be assigned by keyword matching (KM),
and the second subset which contains no keyword and is la-
beled by the nearest neighbor strategy (1-NN, see Section
3.1). In general, labeling the second subset correctly requires
understanding the context, which is harder for the models.
The two sets have no intersection.

Results in Table 5(b) show that: 1) Most utterances (about
68%) do not contain topical keywords. Given that informal



Figure 2: Learning curves of loss/reward (left) and testing accu-
racy/RCR (right) of PN during iterations. First two iterations are
omitted for pre-training.

language is commonly used through dialogues, the second
subset is much more difficult than the first one for this task.
2) Since our method has the ability to correct noisy labels and
to represent dialogue content and context by considering all
historical information, it outperforms NL and NL+HLSTM
substantially on the second subset, and it can even improve
the accuracy on the first set. Thus, our method can better
understand the context.

Influence of the Rewards
We justified the influence of the intermediate reward and de-
layed reward on the performance.

Table 5(c) demonstrates that our method achieves the best
performance when optimizing the intermediate and delayed
rewards simultaneously. When removing the delayed reward,
labeling accuracy drops substantially, indicating that global
topic structure is a key factor in this task. When removing
the intermediate reward, labeling accuracy also drops remark-
ably, indicating that local topic continuity also matters. Sim-
ilarly, the model leads to suboptimal performance on topic
segmentation when ablating either reward. As it can be ob-
served, the intermediate reward is more influential on seg-
mentation than the delayed reward, because local topic conti-
nuity is a more straightforward factor which manipulates seg-
mentation from the labeling perspective.

Convergence Analysis
The learning curves (loss and reward) in Figure 2 show that
our model converges after 14 iterations. The testing accuracy
reaches a stable value (62.2%) after the model converges.

In order to verify how the noisy data are changed by the RL
module, we proposed relative change ratio (RCR) to quantify
the changes of labels between the dataset A (before RL) and
A′ (after refined by RL) (see Algorithm 2). Define the set
∆(A;A′) = {x|y 6= y′, (x, y) ∈ A ∧ (x, y′) ∈ A′} where
y is the label of utterance x, and RCR is then calculated as
RCR(A) = |∆(A;A′)|

|A| . RCR measures the percentage of ut-
terances with labels changed before and after the RL process.

Figure 2 indicates that the RCR(V ) of both the train-
ing and validation data converges to a very small percentage
(<0.5%) after 14 iterations. Meanwhile the accuracy on the
test set is gradually improved. This clearly shows that RL

(a) Noisy Labeling (b) Reinforcement Learning

(c) Noisy Labeling (d) Reinforcement Learning

Figure 3: Exemplar segmentation from the reference segmentation,
Noisy labeling (left), and RL (right). The horizonal axis is the index
of utterances in a session.

continuously improves the result thanks to the rewards mod-
eling the local and global properties of topic structures.

Topic Structure Visualization
To provide more insights, we visualized the segment results
for a session example from noisy labeling, RL, and the gold
annotation, respectively. Each bar indicates a topic boundary
between utterances in a session. Red bar indicates the result
from human annotation, and blue bar from noisy labeling or
our RL method.

As can be seen in Figure 3, noisy labeling tends to produce
more fragmented segments, while RL can provide much more
coherent segmentation.

5 Conclusion
We present a weakly supervised method for topic segmen-
tation and labeling in goal-oriented dialogues. Our central
logic works as follows: noisy labeling provides a warm-start
to state representation training and policy learning, data re-
finement can be obtained by optimizing the rewards which
capture both local topic continuity and global topic structure,
and better data can be used to train better state representations
and policies. This positive loop can be run iteratively until the
model converges. This methodology can be generalized to
other tasks. Through correcting noisy labels of automatically
annotated data, a weakly supervised method can improve the
performance substantially, if some task/domain/prior exper-
tise can be well captured by the reward function. Extensive
experiments show that the method has a strong ability of seg-
mentation, labeling, and context understanding.

Such a method, firstly noisy labeling and then refining with
RL, may inspire other tasks to obtain superior performance in



weakly supervised settings.
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