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Abstract

Most language understanding models in task-
oriented dialog systems are trained on a small
amount of annotated training data, and evalu-
ated in a small set from the same distribution.
However, these models can lead to system fail-
ure or undesirable output when being exposed
to natural language perturbation or variation in
practice. In this paper, we conduct compre-
hensive evaluation and analysis with respect to
the robustness of natural language understand-
ing models, and introduce three important as-
pects related to language understanding in real-
world dialog systems, namely, language vari-
ety, speech characteristics, and noise pertur-
bation. We propose a model-agnostic toolkit
LAUG to approximate natural language pertur-
bations for testing the robustness issues in task-
oriented dialog. Four data augmentation ap-
proaches covering the three aspects are assem-
bled in LAUG, which reveals critical robust-
ness issues in state-of-the-art models. The aug-
mented dataset through LAUG can be used to
facilitate future research on the robustness test-
ing of language understanding in task-oriented
dialog.

1 Introduction

Recently task-oriented dialog systems have been at-
tracting more and more research efforts (Gao et al.,
2019; Zhang et al., 2020b), where understanding
user utterances is a critical precursor to the suc-
cess of such dialog systems. While modern neural
networks have achieved state-of-the-art results on
language understanding (LU) (Wang et al., 2018;
Zhao and Feng, 2018; Goo et al., 2018; Liu et al.,
2019; Shah et al., 2019), their robustness to changes
in the input distribution is still one of the biggest
challenges in practical use.
∗Equal contribution.
†Corresponding author.

Real dialogs between human participants in-
volve language phenomena that do not contribute
so much to the intent of communication. As shown
in Fig. 1, user expressions can be of high lexical
and syntactic diversity when a system is deployed
to users; typed texts may differ significantly from
those recognized from voice speech; interaction
environments may be full of chaos and even users
themselves may introduce irrelevant noises such
that the system can hardly get clean user input.

Unfortunately, neural LU models are vulnerable
to these natural perturbations that are legitimate
inputs but not observed in training data. For ex-
ample, Bickmore et al. (2018) found that popular
conversational assistants frequently failed to under-
stand real health-related scenarios and were unable
to deliver adequate responses on time. Although
many studies have discussed the LU robustness
(Ray et al., 2018; Zhu et al., 2018; Iyyer et al.,
2018; Yoo et al., 2019; Ren et al., 2019; Jin et al.,
2020; He et al., 2020), there is a lack of systematic
studies for real-life robustness issues and corre-
sponding benchmarks for evaluating task-oriented
dialog systems.

In order to study the real-world robustness is-
sues, we define the LU robustness from three as-
pects: language variety, speech characteristics and
noise perturbation. While collecting dialogs from
deployed systems could obtain realistic data distri-
bution, it is quite costly and not scalable since a
large number of conversational interactions with
real users are required. Therefore, we propose an
automatic method LAUG for Language understand-
ing AUGmentation in this paper to approximate the
natural perturbations to existing data. LAUG is a
black-box testing toolkit on LU robustness com-
posed of four data augmentation methods, includ-
ing word perturbation, text paraphrasing, speech
recognition, and speech disfluency.

We instantiate LAUG on two dialog corpora



Frames (El Asri et al., 2017) and MultiWOZ
(Budzianowski et al., 2018) to demonstrate the
toolkit's effectiveness. Quality evaluation by an-
notators indicates that the utterances augmented
by LAUG are reasonable and appropriate with re-
gards to each augmentation approach's target. A
number of LU models with different categories and
training paradigms are tested as base models with
in-depth analysis. Experiments indicate a sharp
performance decline in most baselines in terms of
each robustness aspect. Real user evaluation further
veri�es that LAUG well re�ects real-world robust-
ness issues. Since our toolkit is model-agnostic and
does not require model parameters or gradients, the
augmented data can be easily obtained for both
training and testing to build a robust dialog system.

Our contributions can be summarized as follows:
(1) We classify the LU robustness systematically
into three aspects that occur in real-world dialog,
including language variety, speech characteristics
and noise perturbation; (2) We propose a general
and model-agnostic toolkit,LAUG, which is an in-
tegration of four data augmentation methods on LU
that covers the three aspects. (3) We conduct an
in-depth analysis of LU robustness on two dialog
corpora with a variety of baselines and standardized
evaluation measures. (4) Quality and user evalua-
tion results demonstrate that the augmented data
are representative of real-world noisy data, there-
fore can be used for future research to test the LU
robustness in task-oriented dialog1.

2 Robustness Type

We summarize several common interleaved chal-
lenges in language understanding from three as-
pects, as shown in Fig. 1b:

Language Variety A modern dialog system in a
text form has to interact with a large variety of real
users. The user utterances can be characterized by
a series of linguistic phenomena with a long tail
of variations in terms of spelling, vocabulary, lex-
ical/syntactic/pragmatic choice (Ray et al., 2018;
Jin et al., 2020; He et al., 2020; Zhao et al., 2019;
Ganhotra et al., 2020).

Speech Characteristics The dialog system can
take voice input or typed text, but these two dif-
fer in many ways. For example, written language

1The data, toolkit, and codes are available athttps:
//github.com/thu-coai/LAUG , and will be merged
into https://github.com/thu-coai/ConvLab-2
(Zhu et al., 2020).

(a) Dataset construction

(b) Real-world application

Figure 1: Difference between dialogs collected for
training and those for real-world applications.

tends to be more complex and intricate with longer
sentences and many subordinate clauses, whereas
spoken language can contain repetitions, incom-
plete sentences, self-corrections and interruptions
(Wang et al., 2020a; Park et al., 2019; Wang et al.,
2020b; Honal and Schultz, 2003; Zhu et al., 2018).

Noise Perturbation Most dialog systems are
trained only on noise-free interactions. However,
there are various noises in the real world, including
background noise, channel noise, misspelling, and
grammar mistakes (Xu and Sarikaya, 2014; Li and
Qiu, 2020; Yoo et al., 2019; Henderson et al., 2012;
Ren et al., 2019).

3 LAUG: Language Understanding
Augmentation

This section introduces commonly observed out-of-
distribution data in real-world dialog into existing
corpora. We approximate natural perturbations in
an automatic way instead of collecting real data by
asking users to converse with a dialog system.

To achieve our goals, we propose a toolkitLAUG,
for black-box evaluation of LU robustness. It is an
ensemble of four data augmentation approaches,
including Word Perturbation (WP), Text Paraphras-
ing (TP), Speech Recognition (SR), and Speech
Dis�uency (SD). Noting that LAUG is model-
agnostic and can be applied to any LU dataset
theoretically. Each augmentation approach tests

https://github.com/thu-coai/LAUG
https://github.com/thu-coai/LAUG
https://github.com/thu-coai/ConvLab-2


one or two proposed aspects of robustness as Table
1 shows. The intrinsic evaluation of the chosen
approaches will be given in Sec. 4.

Capacity LV SC NP
Word Perturbation (WP)

p p

Text Paraphrasing (TP)
p

Speech Recognition (SR)
p p

Speech Dis�uency (SD)
p

Table 1: The capacity that each augmentation method
evaluates, including Language Variety (LV), Speech
Characteristics (SC) and Noise Perturbation (NP).

Task Formulation Given the dialog context
X t = f x2t � m ; : : : ; x2t � 1; x2t g at dialog turnt,
where eachx is an utterance andm is the size
of sliding window that controls the length of uti-
lizing dialog history, the model should recognize
yt , the dialog act (DA) ofx2t . Empirically, we
setm = 2 in the experiment. LetU; S denote the
set of user/system utterances, respectively. Then,
we havex2t � 2i 2 U and x2t � 2i � 1 2 S. The
task of this paper is to examine different LU mod-
els whether they can predictyt correctly given a
perturbed input~X t . The perturbation is only per-
formed on user utterances.

Word Perturbation Inspired by EDA (Easy
Data Augmentation) (Wei and Zou, 2019), we pro-
pose its semantically conditioned version, SC-EDA,
which considers task-speci�c augmentation oper-
ations in LU. SC-EDA injects word-level pertur-
bation into each utterancex0and updates its corre-
sponding semantic labely0.

Original I want to go to Cambridge .
DA attractionf inform (dest = Cambridge)g

Syno. I wishing to go to Cambridge .
Insert I need want to go to Cambridge .
Swap I to want go to Cambridge .
Delete I want to go to Cambridge .
SVR I want to go to Liverpool .
DA attractionf inform (dest = Liverpool)g

Table 2: An SC-EDA example. Syno., Insert, Swap and
Delete are four operations described in EDA, of which
the dialog act is identical to the original one. SVR de-
notesslot value replacement.

Table 2 shows an example of SC-EDA. Original
EDA randomly performs one of the four operations,
includingsynonym replacement, random insertion,
random swapandrandom deletion2. Noting that,
to keep the label unchanged, words related to slot

2See the EDA paper for details of each operation.

values of dialog acts are not modi�ed in these four
operations. Additionally, we designslot value re-
placement, which changes the utterance and label
at the same time to test model's generalization to
unseen entities. Some randomly picked slot values
are replaced by unseen values with the same slot
name in the database or crawled from web sources.
For example in Table 2, “Cambridge” is replaced
by “Liverpool”, where both belong to the same slot
name “dest” (destination).

Synonym replacementand slot value replace-
mentaim at increasing the language variety, while
random word insertion/deletion/swaptest the ro-
bustness of noise perturbation. From another per-
spective, four operations from EDA perform an
Invariance test, whileslot value replacementcon-
ducts a Directional Expectation test according to
CheckList (Ribeiro et al., 2020).

Text Paraphrasing The target of text paraphras-
ing is to generate a new utterancex0 6= x while
maintaining its dialog act unchanged, i.e.y0 = y.
We applied SC-GPT (Peng et al., 2020), a �ne-
tuned language model conditioned on the dialog
acts, to paraphrase the sentences as data augmenta-
tion. Speci�cally, it characterizes the conditional
probabilityp� (xjy) =

Q K
k=1 p� (xk jx<k ; y); where

x<k denotes all the tokens before thek-th position.
The model parameters� are trained by maximizing
the log-likelihood ofp� .

DA train * f inform ( dest = Cambridge ; arrive = 20:45 )g
Text Hi, I'm looking for a train that is going to Cambridge

and arriving there by 20:45, is there anything like that?
DA train f inform ( dest = Cambridge ; arrive = 20:45 )g
Text Yes, to Cambridge, and I would like to arrive by 20:45.

Table 3: A pair of examples that consider contextual
resolution or not. In the second example, the user omits
to claim that he wants a train in the second utterance
since he has mentioned this before.

We observe that co-reference and ellipsis fre-
quently occurs in user utterances. Therefore, we
propose different encoding strategies during para-
phrasing to further evaluate each model's capacity
for context resolution. In particular, if the user
mentions a certain domainfor the �rst time in a
dialog, we will insert a “*” mark into the sequen-
tial dialog acty0 to indicate that the user tends to
express without co-references or ellipsis, as shown
in Table 3. Then SC-GPT is �netuned on the pro-
cessed data so that it can be aware of dialog context
when generating paraphrases. As a result, we �nd



that the average token length of generated utter-
ances with/without “*” is 15.96/12.67 respectively
after SC-GPT's �netuning on MultiWOZ.

It should be noted that slot values of an utterance
can be paraphrased by models, resulting in a dif-
ferent semantic meaningy0. To prevent generating
irrelevant sentences, we apply automatic value de-
tection in paraphrases with original slot values by
fuzzy matching3 , and replace the detected values
in bad paraphrases with original values. In addi-
tion, we �lter out paraphrases that have missing
or redundant information compared to the original
utterance.

Speech Recognition We simulate the speech
recognition (SR) process with a TTS-ASR pipeline
(Park et al., 2019). First we transfer textual user
utterancex to its audio forma using gTTS4 (Oord
et al., 2016), a Text-to-Speech system. Then audio
data is translated back into textx0by DeepSpeech2
(Amodei et al., 2016), an Automatic Speech Recog-
nition (ASR) system. We directly use the released
models in the DeepSpeech2 repository5 with the
original con�guration, where the speech model is
trained on Baidu Internal English Dataset, and the
language model is trained on CommonCrawl Data.

Type Original Augmented
Similar sounds leicester lester

Liaison for 3 people free people
Spoken numbers 13:45 thirteen forty �ve

Table 4: Examples of speech recognition perturbation.

Table 4 shows some typical examples of our SR
augmentation. ASR sometimes wrongly identi�es
one word as another with similar pronunciation. Li-
aison constantly occurs between successive words.
Expressions with numbers including time and price
are written in numerical form but different in spo-
ken language.

Since SR may modify the slot values in the trans-
lated utterances, fuzzy value detection is employed
here to handle similar sounds and liaison problems
when it extracts slot values to obtain a semantic la-
bel y0. However, we do not replace the noisy value
with the original value as we encourage such mis-
recognition in SR, thusy0 6= y is allowed. More-
over, numerical terms are normalized to deal with
the spoken number problem. Most slot values could

3https://pypi.org/project/fuzzywuzzy/
4https://pypi.org/project/gTTS/
5https://github.com/PaddlePaddle/

DeepSpeech

be relocated by our automatic value detection rules.
The remainder slot values which vary too much
to recognize are discarded along with their corre-
sponding labels.

Speech Dis�uency Dis�uency is a common fea-
ture of spoken language. We follow the catego-
rization of dis�uency in previous works (Lickley,
1995; Wang et al., 2020b): �lled pauses, repeats,
restarts, and repairs.

Original I want to go to Cambridge.
Pauses I want to um go to uh Cambridge.
RepeatsI, I want to go to, go to Cambridge.
RestartsI just I want to go to Cambridge.
Repairs I want to go to Liverpool, sorry I mean Cambridge.

Table 5: Example of four types of speech dis�uency.

We present some examples of SD in Table 5.
Filler words (“um”, “uh”) are injected into the sen-
tence to present pauses. Repeats are inserted by re-
peating the previous word. In order to approximate
the real distribution of dis�uency, theinterruption
pointsof �lled pauses and repeats are predicted
by a Bi-LSTM+CRF model (Zayats et al., 2016)
trained on an annotated dataset SwitchBoard (God-
frey et al., 1992), which was collected from real
human talks. For restarts, we insertfalse start terms
(“I just”) as a pre�x of the utterance to simulate
self-correction. In LU task, we apply repairs on slot
values to fool the models to predict wrong labels.
We take the original slot value asRepair(“Cam-
bridge”) and take another value with the same slot
name asReparandum(“Liverpool”). An edit term
(“sorry, I mean”) is inserted betweenRepairand
Reparandumto construct a correction. The �ller
words, restart terms, and edit terms and their occur-
rence frequency are all sampled from their distribu-
tion in SwitchBoard.

In order to keep the spans of slot values intact,
each span is regarded as one whole word. No inser-
tions are allowed to operate inside the span. There-
fore, SD augmentation do not change the original
semantic and labels of the utterance, i.e.y0 = y.

4 Experimental Setup

4.1 Data Preparation

In our experiments we adopt Frames6 (El Asri et al.,
2017) and MultiWOZ (Budzianowski et al., 2018),
which are two task-oriented dialog datasets where

6As data division was not de�ned in Frames, we split the
data into training/validation/test set with a ratio of 8:1:1.



(a) Classi�cation-based language understanding

(b) Generation-based language understanding

Figure 2: An illustration of two categories of language understanding models. Dialog history is �rst encoded as
conditions (not depicted here).

semantic labels of user utterances are annotated.
In particular, MultiWOZ is one of the most chal-
lenging datasets due to its multi-domain setting
and complex ontology, and we conduct our exper-
iments on the latest annotation-enhanced version
MultiWOZ 2.3 (Han et al., 2020), which provides
cleaned annotations of user dialog acts (i.e. seman-
tic labels). The dialog act consists of four parts:
domain, intent, slot names, and slot values. The
statistics of two datasets are shown in Table 6. Fol-
lowing Takanobu et al. (2020), we calculate overall
F1 scores as evaluation metrics due to the multi-
intent setting in LU.

Datasets Frames MultiWOZ
# Training Dialogs 1,095 8,438
# Validation / Test Dialogs 137 / 137 1,000 / 1,000
# Domains / # Intents 2 / 12 7 / 5
Avg. # Turns per Dialog 7.60 6.85
Avg. # Tokens per Turn 11.67 13.55
Avg. # DAs per Turn 1.87 1.66

Table 6: Statistics of Frames and MultiWOZ 2.3. Only
user turnsU are counted here.

The data are augmented with the inclusion of its
copies, leading to a composite of all 4 augmenta-
tion types with equal proportion. Other setups are
described in each experiment7.

Method Change Rate/% Human Annot./%
Char Word Slot Utter. DA

WP 17.9 16.0 36.3 95.2 97.0
TP 60.3 74.4 13.3 97.1 97.7
SR 7.9 14.5 40.8 95.1 96.7
SD 22.7 30.4 0.4 98.8 99.2

Table 7: Statistics of augmented MultiWOZ data and
their results of quality annotation. Automatic metrics
include change rate of characters, words and slot val-
ues. Quality evaluation includes appropriateness at ut-
terance level (Utter.) and at dialog act level (DA).

Table 7 shows the change rates in different as-
7See appendix for the hyperparameter setting of LAUG.

pects by comparing our augmented utterances with
the original counterparts. We could �nd each aug-
mentation method has a distinct effect on the data.
For instance, TP rewrites the text without changing
the original meaning, thus lexical and syntactic rep-
resentations dramatically change, while most slot
values remain unchanged. In contrast, SR makes
the lowest change rate in characters and words but
modi�es the most slot values due to the speech
misrecognition.

4.2 Quality Evaluation

To ensure the quality of our augmented test set,
we conduct human annotation on 1,000 sampled
utterances in each augmented test set of Multi-
WOZ. We ask annotators to check whether our
augmented utterances are reasonable and our auto-
detected value annotations are correct (two true-or-
false questions). According to the feature of each
augmentation method, different evaluation proto-
cols are used. For TP and SD, annotators check
whether the meaning of utterances and dialog acts
are unchanged. For WP, changing slot values is
allowed due to slot value replacement, but the slot
name should be the same. For SR, annotators are
asked to judge on the similarity of pronunciation
rather than semantics. In summary, all the high
scores in Table 7 demonstrate that LAUG makes
reasonable augmented examples.

4.3 Baselines

LU models roughly fall into two categories:
classi�cation-based and generation-based models.
Classi�cation based models (Hakkani-Tür et al.,
2016; Goo et al., 2018) extract semantics by intent
detection and slot tagging. Intent detection is com-
monly regarded as a multi-label classi�cation task,
and slot tagging is often treated as a sequence label-
ing task withBIO format(Ramshaw and Marcus,
1999), as shown in Fig. 2a. Generation-based mod-



Model Train Ori. WP TP SR SD Avg. Drop Recov.

MILU Original 74.15 71.05 69.58 61.53 65.27 66.86 -7.29 /
Augmented 75.78 72.49 71.96 64.76 70.92 70.03 -5.75 +3.17

BERT Original 78.82 75.92 74.57 70.31 70.31 72.78 -6.04 /
Augmented 78.21 76.70 75.63 72.04 77.34 75.43 -2.78 +2.65

ToD-BERT Original 80.61 77.30 76.19 70.88 71.94 74.08 -6.53 /
Augmented 80.37 77.32 77.26 72.54 79.04 76.54 -3.83 +2.46

CopyNet Original 67.84 63.90 61.41 56.11 59.26 60.17 -7.67 /
Augmented 69.35 67.10 65.90 60.98 67.71 65.42 -3.93 +5.25

GPT-2 Original 78.78 74.96 72.85 69.00 69.19 71.50 -7.28 /
Augmented 79.15 75.25 73.86 71.37 74.19 73.67 -5.48 +2.17

(a) Frames
Model Train Ori. WP TP SR SD Avg. Drop Recov.

MILU Original 91.33 88.26 87.20 77.98 83.67 84.28 -7.05 /
Augmented 91.39 90.01 88.04 86.97 89.54 88.64 -2.75 +4.36

BERT Original 93.40 90.96 88.51 82.35 85.98 86.95 -6.45 /
Augmented 93.32 92.23 89.45 89.86 92.71 91.06 -2.26 +4.11

ToD-BERT Original 93.28 91.27 88.95 81.16 87.18 87.14 -6.14 /
Augmented 93.29 92.40 89.71 90.06 92.85 91.26 -2.03 +4.12

CopyNet Original 90.97 85.25 87.40 71.06 77.66 80.34 -10.63 /
Augmented 90.49 89.19 89.53 85.69 89.83 88.56 -1.93 +8.22

GPT-2 Original 91.53 85.35 88.23 80.74 84.33 84.66 -6.87 /
Augmented 91.59 90.26 89.92 86.55 90.55 89.32 -2.27 +4.66

(b) MultiWOZ

Table 8: Robustness test results. Ori. stands for the original test set, WP, TP, SR, SD for 4 augmented test sets
and Avg. for the average performance on 4 augmented test sets. The additional data in augmented training set has
the same utterance amount as the original training set and is composed of 4 types of augmented data with equal
proportion. Drop shows the performance decline between Avg. and Ori. while Recov. denotes the performance
recovery of Avg. between training on augmented/original data (e.g., 88.64%-84.28% for MILU on MultiWOZ).

els (Liu and Lane, 2016; Zhao and Feng, 2018) gen-
erate a dialog act containing intent and slot values.
They treat LU as a sequence-to-sequence problem
and transform a dialog act into a sequential struc-
ture as shown in Fig. 2b. Five base models with
different categories are used in the experiments, as
shown in Table 9.

Model Cls. Gen. PLM
MILU (Hakkani-Tür et al., 2016)

p

BERT (Devlin et al., 2019)
p p

ToD-BERT (Wu et al., 2020)
p p

CopyNet (Gu et al., 2016)
p

GPT-2 (Radford et al., 2019)
p p

Table 9: Features of base models. Cls./Gen. denotes
classi�cation/generation-based models. PLM stands
for pre-trained language models.

To support a multi-intent setting in classi�cation-
based models, we decouple the LU process as fol-
lows: �rst perform domain classi�cation and in-
tent detection, then concatenate two special tokens
which indicate the detected domain and intent (e.g.
[restaurant ][inform ]) at the beginning of the in-
put sequence, and last encode the new sequence to
predict slot tags. In this way, the model can address
overlapping slot valueswhen values are shared in

different dialog acts.

5 Evaluation Results

5.1 Main Results

We conduct robustness testing on all three capaci-
ties for �ve base models using four augmentation
methods in LAUG. All baselines are �rst trained
on the original datasets, then �netuned on the aug-
mented datasets. Overall F1-measure performance
on Frames and MultiWOZ is shown in Table 8.
All experiments are conducted over 5 runs, and
averaged results are reported.

Robustness for each capacity can be measured
by performance drops on the corresponding aug-
mented test sets. All models achieve some perfor-
mance recovery on augmented test sets after trained
on the augmented data, while keeping a compara-
ble result on the original test set. This indicates the
effectiveness of LAUG in improving the model's
robustness.

We observe that pre-trained models outperform
non-pre-trained ones on both original and aug-
mented test sets. Classi�cation-based models
have better performance and are more robust than
generation-based models. ToD-BERT, the state-



(a) BERT (b) GPT-2

Figure 3: Performance on MultiWOZ with different ratios of augmented training data amount to the original one.
The total amount of training data varies but they are always composed of 4 types of augmented data with even
proportion. Different test sets are shown with different colored lines.

of-the-art model which was further pre-trained on
task-oriented dialog data, has comparable perfor-
mance with BERT. With most augmentation meth-
ods, ToD-BERT shows slightly better robustness
than BERT.

Since the data volume of Frames is far less than
that of MultiWOZ, the performance improvement
of pre-trained models on Frames is larger than that
on MultiWOZ. Due to the same reason, augmented
training data bene�ts the non-pre-trained models
performance of on Ori. test set more remarkably in
Frames where data is not suf�cient.

Among the four augmentation methods, SR has
the largest impact on the models' performance, and
SD comes the second. The dramatic performance
drop when testing on SR and SD data indicates that
robustness for speech characteristics may be the
most challenging issue.

Fig. 3 shows how the performance of BERT and
GPT-2 changes on MultiWOZ when the ratio of
augmented training data to the original data varies
from 0.1 to 4.0. F1 scores on augmented test sets
increase when there are more augmented data for
training. The performance of BERT on augmented
test sets is improved when augmentation ratio is
less than 0.5 but becomes almost unchanged af-
ter 0.5 while GPT-2 keeps increasing stably. This
result shows the different characteristics between
classi�cation-based models and generation-based
models when �netuned with augmented data.

5.2 Ablation Study

Between augmentation approaches In order to
study the in�uence of each augmentation approach

in LAUG, we test the performance changes when
one augmentation approach is removed from con-
structing augmented training data. Results on Mul-
tiWOZ are shown in Table 10.

Train Ori. WP TP SR SD Avg.
Aug. 91.39 90.01 88.04 86.97 89.54 88.64
-WP 91.29 88.42 88.43 86.98 89.20 88.26
-TP 91.55 90.15 87.81 86.82 89.42 88.55
-SR 91.23 90.13 88.30 77.90 89.51 86.46
-SD 91.56 90.24 88.60 86.78 83.96 87.40
Ori. 91.33 88.26 87.20 77.98 83.67 84.28

(a) MILU
Train Ori. WP TP SR SD Avg.
Aug. 93.32 92.23 89.45 89.86 92.71 91.06
-WP 93.23 90.94 89.42 89.93 92.82 90.78
-TP 93.08 92.24 88.62 89.80 92.62 90.82
-SR 93.43 92.30 89.50 83.48 93.07 89.59
-SD 93.11 92.15 89.44 90.00 85.22 89.20
Ori. 93.40 90.96 88.51 82.35 85.98 86.95

(b) BERT

Table 10: Ablation study between augmentation ap-
proaches for two models on MultiWOZ. Highlighted
numbers denote the most sharp decline for each aug-
mented test set.

Large performance decline on each augmented
test set is observed when the corresponding aug-
mentation approach is removed in constructing
training data. The performance after removing
an augmentation method is comparable to the
one without augmented training data. Only slight
changes are observed without other approaches.
These results indicate that our four augmentation
approaches are relatively orthogonal.

Within augmentation approach Our imple-
mentation of WP and SD consist of several func-


