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Abstract

Most existing methods determine relation types only after all
the entities have been recognized, thus the interaction be-
tween relation types and entity mentions is not fully mod-
eled. This paper presents a novel paradigm to deal with re-
lation extraction by regarding the related entities as the ar-
guments of a relation. We apply a hierarchical reinforcement
learning (HRL) framework in this paradigm to enhance the
interaction between entity mentions and relation types. The
whole extraction process is decomposed into a hierarchy of
two-level RL policies for relation detection and entity extrac-
tion respectively, so that it is more feasible and natural to deal
with overlapping relations. Our model was evaluated on pub-
lic datasets collected via distant supervision, and results show
that it gains better performance than existing methods and is
more powerful for extracting overlapping relations1.

Introduction
Extracting entities, relations, or events from unstructured
texts is crucial for building large-scale, reusable knowl-
edge which can facilitate many other tasks (Mintz et al.
2009; Nadeau and Sekine 2007), including knowledge base
construction (Dong et al. 2014; Luan et al. 2018), ques-
tion answering (Fader, Zettlemoyer, and Etzioni 2014), and
biomedical text mining (Huang and Lu 2015).

The task of relation extraction is to identify relations
(es, r, et)

2, a triple consisting of a relation type r, a source
entity es and a target entity et. In this paper, we propose
a novel joint extraction paradigm in the framework of hier-
archical reinforcement learning (Sutton, Precup, and Singh
1999), where we first detect a relation and then extract the
corresponding entities as the argument of a relation.

Our model detects relation indicators by a high-level re-
inforcement learning (RL) process and identifies the partici-
pating entities for the relation by a low-level RL process. As
shown in Figure 1, the extraction process makes sequential

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Data and code are publicly available at: https://github.
com/truthless11/HRL-RE.
∗All authors contributed equally to this work.
†Corresponding author: Minlie Huang.
2Throughout this paper, a relation refers to a triple (es, r, et), a

relation type refers to r.

scans from the beginning to the end of a sentence (I). The
high-level process is to detect a relation indicator at some
particular position. If a certain relation is identified, a low-
level sequential process is triggered to identify the corre-
sponding entities for that relation (II). When the low-level
subtask for entity extraction is completed (III), the high-
level RL process continues its scan to search for the next
relation (IV) in the sentence.

This paradigm has strengths in dealing with two issues
existing in prior studies. First, most traditional models
(Gormley, Yu, and Dredze 2015; Hoffmann et al. 2011;
Miwa and Bansal 2016) determine a relation type only af-
ter all the entities have been recognized, whereas the inter-
action between the two tasks is not fully captured. In some
sense, these methods are aligning a relation to entity pairs,
and therefore, they may introduce additional noise since a
sentence containing an entity pair may not truly mention the
relation (Zhang et al. 2013), or may describe multiple rela-
tions (Takamatsu, Sato, and Nakagawa 2012).

Second, there still lacks the elegance of the joint
extraction method to deal with one-to-many problems
(overlapping relations): one entity may participate in mul-
tiple relations in the same sentence (see Steve Blichick in
Figure 1), or even the same entity pair within a sentence is
associated with different relations. To our best knowledge,
CopyR (Zeng et al. 2018) is the only method that discussed
this issue, which views relation extraction as a triple gener-
ation process. However, this method, as our experiments re-
veal, strongly relies on the training data, and cannot extract
multi-word entity mentions.

In our paradigm, the first issue is handled by treating enti-
ties as the arguments of a relation. The dependency between
entity mentions and relation types is formulated through de-
signing the state representations and rewards in the high-
level and low-level RL processes. The interaction is well
captured since the main task (high-level RL process for re-
lation detection) passes messages when launching a subtask
(low-level RL process for entity extraction), and the low-
level rewards, signifying how well a subtask is completed,
are passed back to the main task. In this manner, the interac-
tion between relation types and entity mentions can be better
modeled.

The second issue is addressed by our hierarchical struc-
ture. By decomposing relation extraction into a high-level



Figure 1: An example sentence which has two overlapping relations (Steve Belichick, parent-children, Bill Belichick),
(Steve Belichick, place-of-death, Annapolis). The solid arrow indicates the high-level relation detection process, and the
dashed arrow for low-level entity extraction. The dotted arrow marks a transition between the two processes. This example
shows how overlapping relations are extracted (Steve Blichick is included in both triples).

task for relation detection and a low-level task for entity
extraction, multiple relations in a sentence can be handled
separately and sequentially. As shown in Figure 1, the first
relation is extracted when the main task detects the first
relation type (parent-children), and the second rela-
tion is subsequently extracted when the second relation type
(place-of-death) is triggered, even though the two re-
lations share the same entity (Steve Blichick). Experiments
demonstrate the proposed paradigm achieves strong perfor-
mance over the baselines in extracting overlapping relations.

In summary, our contributions are in two folds:
• We design a novel end-to-end hierarchical paradigm to

jointly identify entity mentions and relation types, which
decomposes the task into a high-level task for relation de-
tection and a low-level task for entity extraction.

• By incorporating reinforcement learning into this
paradigm, the proposed method outperforms baselines in
modeling the interactions between the two tasks, and ex-
tracting overlapping relations.

Related Work
Traditional pipelined approaches treat entity extraction and
relation classification as two separate tasks (Mintz et al.
2009; Gormley, Yu, and Dredze 2015; Tang et al. 2015).
They first extract the token spans in the text to detect en-
tity mentions, and then discover the relational structures
between entity mentions. Although it is flexible to build
pipelined methods, these methods suffer from error prop-
agation since downstream modules are largely affected by
the errors introduced by upstream modules.

To address this problem, a variety of joint learning meth-
ods was proposed. Kate and Mooney (2010) proposed a
card-pyramid graph structure for joint extraction, and Hoff-
mann et al. (2011) developed graph-based multi-instance
learning algorithms. However, the two methods both applied
a greedy search strategy to reduce the exploration space
aggressively, which limits the performance. Other studies
employed a structured learning approach (Li and Ji 2014;
Miwa and Sasaki 2014). All these models depend on heavy
feature engineering, which requires much manual efforts
and domain expertise.

On the other hand, Björne et al. (2011) proposed to first
extract relation triggers, which refer to a phrase that explic-
itly expresses the occurrence of a relation in a sentence, and
then determine their arguments to reduce the task complex-
ity. Open IE systems ReVerb (Fader, Soderland, and Etzioni
2011) identifies relational phrases using lexical constraints,
which also follows a “relation”-first, “argument”-second ap-
proach. But there are many cases where no relation trigger
appears in a sentence so that such relations cannot be cap-
tured in these methods.

Neural models for joint relation extraction are investi-
gated in recent studies (Katiyar and Cardie 2016; Zhang,
Zhang, and Fu 2017). Miwa and Bansal (2016) proposed a
neural model that shares parameters for entity extraction and
relation classification, but the two tasks are separately han-
dled, and the final decision is obtained via exhaustively enu-
merating the combinations between detected entity mentions
and relation types. Unlike aforementioned methods that all
the entities are recognized first, Zheng et al. (2017) used a
tagging scheme which applies a Cartesian product of the re-
lation type tags and the entity mention tags, and thus each
word is assigned a unique tag that encodes entity mentions
and relation types simultaneously. However, it is unable to
deal with overlapping relations in a sentence: if an entity
is the argument of multiple relations, the tag for the entity
should not be unique. The recent study (Zeng et al. 2018)
is closely related to ours that aims to handle overlapping
relations. It employs multiple decoders based on sequence-
to-sequence (Seq2Seq) learning where a decoder copies an
entity word from the source sentence and each triple in a sen-
tence is generated by different decoders, but such a method
strongly relies on the annotation of training data and it can-
not extract an entity that has multiple words.

Reinforcement learning has been witnessed in informa-
tion extraction very recently. RL was employed to ac-
quire and incorporate external evidence in event extraction
(Narasimhan, Yala, and Barzilay 2016). Feng et al. (2018)
used RL to train an instance selector to denoise training data
obtained via distant supervision for relation classification.
Improvement was reported in distant supervision relation
type extraction by exploring RL to redistribute false posi-



tives into the negative examples (Qin, Xu, and Wang 2018).

Hierarchical Extraction Framework
Overview
First of all, we define relation indicator as follows:
Definition 1. Relation indicator is the position in a sentence
when sufficient information has been mentioned to iden-
tify a semantic relation. Different from relation trigger (i.e.,
explicit relation mention), relation indicators can be verbs
(e.g. die of), nouns (e.g. his father), or even prepositions
(e.g. from/by), other symbols such as comma and period (As
shown in Figure 1, the relation type place-of-death
can be signified till the comma position).

Relation indicator is crucial for our model to complete the
extraction task, because the entire extraction task is decom-
posed into relation indicator detection and entity mention
extraction.

Figure 2: Overview of a hierarchical agent in relation extrac-
tion.

The entire extraction process works as follows. An agent
predicts a relation type at a particular position when it scans
a sentence sequentially. Note that this process of relation de-
tection needs no annotation of entities, thus different from
relation classification which is to identify the relations be-
tween pairs of entities. When there is no sufficient evidence
to indicate a semantic relation at a time step, the agent may
choose NR, a special relation type that indicates no rela-
tion. Otherwise a relation indicator is triggered, the agent
launches a subtask for entity extraction to identify the argu-
ments of the relation, the two entities. When the entity men-
tions are identified, the subtask is completed and the agent
continues to scan the rest of the sentence for other relations.

Such a process can be naturally formulated as a semi-
Markov decision process (Sutton, Precup, and Singh 1999):
1) a high-level RL process that detects a relation indicator in
a sentence; 2) a low-level RL process that identifies the as-
sociated entities for the corresponding relation. By decom-
posing the task into a hierarchy of two RL processes, the
model is advantageous at dealing with sentences which have
multiple relation types for the same entity pair, or one-to-
many entities in which an entity is the argument of multiple
relations.

Relation Detection with High-level RL
The high-level RL policy µ aims to detect the relations in a
sentence S = w1w2 · · ·wL, which can be regarded as a con-
ventional RL policy over options. An option refers to a high-
level action, and a low-level RL process will be launched

Figure 3: Illustration of a two-level hierarchical policy struc-
ture. Left panel shows the high-level policy for relation de-
tection, and right panel shows the low-level policy for entity
extraction.

once an option is executed by the agent.
Option: The option ot is selected from O = {NR} ∪ R
where NR indicates no relation, and R is the relation type
set. When a low-level RL process enters a terminal state, the
control of the agent will be taken over to the high-level RL
process to execute the next options.
State: The state sht ∈ S of the high level RL process at time
step t, is represented by: 1) the current hidden state ht, 2) the
relation type vector vrt (the embedding of the latest option
ot′ that ot′ 6= NR, a learnable parameter), and 3) the state
from the last time step st−1

3, formally represented by

sht = fh(Wh
s [ht;v

r
t ; st−1]), (1)

where fh(·) is a non-linear function implemented by MLP.
To obtain the hidden state ht, we introduce a sequence Bi-
LSTM over the current input word embedding wt:

−→
ht =

−−−−→
LSTM(

−−→
ht−1,wt),

←−
ht =

←−−−−
LSTM(

←−−
ht+1,wt),

ht = [
−→
ht;
←−
ht].

(2)

Policy: The stochastic policy for relation detection µ : S →
O which specifies a probability distribution over options:

ot ∼ µ(ot|sht ) = softmax(Wµs
h
t ). (3)

Reward: Then, the environment provides intermediate re-
ward rht to estimate the future return when executing ot. The
reward is computed as below:

rht =

{ −1, if ot not in S
0, if ot = NR
1, if ot in S.

(4)

If ot = NR at certain time step, the agent transfers to a new
high-level inter-option state at the next time step. Otherwise

3where st−1 = sht−1 if the agent sampled a high-level option
at last time step t − 1, and st−1 = slt−1 if the agent sampled a
low-level action.



Figure 4: The entity annotation scheme for the example sentence in Figure 1 when the agent predicts a relation type
parent-children between Steve Belichick and Bill Belichick. In this example, New England Patriots and Annapolis are
not-concerned entities with respect to relation type parent-children.

the low-level policy will execute the entity extraction pro-
cess. The inter-option state will not transfer until the subtask
over current option ot is done, which may take multiple time
steps. Such a semi-Markov process continues until the last
option about the last word wL of S is sampled. Finally, a
final reward rhfin is obtained to measure the sentence-level
extraction performance that µ detects:

rhfin = Fβ(S) =
(1 + β2)Prec ·Rec
β2Prec+Rec

, (5)

where Fβ is the weighted harmonic mean of precision and
recall in terms of the relations in S. Prec/Rec indicates pre-
cision/recall respectively, computed over one sentence.

Entity Extraction with Low-level RL
Once the high-level policy has predicted a non-NR relation
type, the low-level policy π will extract the participating
entities for the corresponding relation. The low-level pol-
icy over actions (primitive actions) is formulated very simi-
larly as the high-level policy over options. To make the pre-
dicted relation type accessible in the low-level process, the
option ot′ from the high level RL is taken as additional input
throughout the low-level extraction process.
Action: The action at each time step is to assign an entity tag
to the current word. The action space, i.e., entity tag space
A = ({S,T,O} × {B,I}) ∪ {N}, where S represents the
participating source entity, T for the target one, O for the en-
tities that are not associated with the predicted relation type
ot′ , and N for for non-entity words. Note that, the same entity
mention may be assigned with different S/T/O tags depend-
ing on different relation types concerned at the moment. In
this way, the model can deal with overlapping relations. In
addition, we use the B/I symbols to represent the beginning
word and the inside of an entity, respectively. Refer to Fig-
ure 4 for an example.
State: Similar to the policy for relation detection, the low-
level intra-option state slt is represented by 1) the hidden
state ht of current word embedding wt, 2) the entity tag
vector vet which is a learnable embedding of at−1, 3) the
state from previous time step st−1, and 4) the context vector
ct′ using the relational state representation assigned to the
latest option sht′ in Eq. (1), as follows:

ct′ = g(Wl
hs
h
t′)

slt = f l(Wl
s[ht;v

e
t ; st−1; ct′ ]),

(6)

where ht is the hidden state obtained from the Bi-LSTM
module in Eq. (2), and f l(·), g(·) are non-linear functions
implemented by MLP. Note that st−1 may be a state either
from the high-level RL process or the low-level one.

Policy: The stochastic policy for entity extraction π : S →
A outputs an action distribution given intra-option state slt
and the high-level option ot′ that launches the current sub-
task.

at ∼ π(at|slt; ot′) = softmax(Wπ[ot′ ]s
l
t), (7)

where Wπ is an array of |R| matrices.
Reward4: Given the relation type ot′ , the entity tag for each
word can be easily obtained by sampling actions from the
policy. Therefore, an immediate reward rlt is provided when
the action at is sampled by simply measuring the prediction
error over gold-standard annotation:

rlt = λ(yt) · sgn(at = yt(ot′)), (8)
where sgn(·) is the sign function, and y(ot′) is the gold-
standard entity tag conditioned on the predicted relation type
ot′ . Here λ(y) is a bias weight for down-weighing non-entity
tag, defined as follows:

λ(y) =

{
1, if y 6= N
α, if y = N. (9)

The smaller α leads to less reward on words that are not
entities. In this manner, the model avoids to learn a trivial
policy that predicts all words as N (non-entity words). When
all the actions are sampled, an additional final reward rlfin is
computed. If all the entity tags are predicted correctly, then
the agent receives +1 reward, otherwise -1.

Hierarchical Policy Learning
To optimize the high-level policy, we aim to maximize the
expected cumulative rewards from the main task at each time
step t as the agent samples trajectories following the high-
level policy µ, which can be computed as follows:

J(θµ,t) = Esh,o,rh∼µ(o|sh)[

T∑
k=t

γk−trhk ], (10)

where µ is parameterized by θµ, γ is a discount factor in RL,
and the whole sampling process µ takes T time steps before
it terminates.

Similarly, we learn the low-level policy by maximizing
the expected cumulative intra-option rewards from the sub-
task over option ot′ when the agent samples along low-level
policy π(·|ot′) at time step t:

J(θπ,t; ot′) =Esl,a,rl∼π(a|sl;ot′ )[

T ′∑
k=t

γk−trlk], (11)

4We only discuss the situation where ot′ is included in S, i.e.
the subtask option ot′ is correctly predicted. Otherwise, all the low-
level rewards are set to 0, which can be seen that the agent has done
nothing with the low-level policy.



if the subtask ends at time step T ′.
By decomposing the cumulative rewards into a Bellman

equation, we acquire:

Rµ(sht , ot) =E[
N−1∑
j=0

γjrht+j+

γNRµ(sht+N , ot+N )|sht , ot],
Rπ(slt, at; ot′) =E[rlt + γRπ(slt+1, at+1; ot′)|slt, at],

(12)

whereN is the number of time steps that a subtask continues
when the entity extraction policy runs upon option ot , so the
agent’s next option is ot+N . In particular, if ot = NR, then
N = 1.

Then, we use policy gradient methods (Sutton et al. 2000)
with the REINFORCE algorithm (Williams 1992) to opti-
mize both high-level and low-level policies. With the likeli-
hood ratio trick, the gradient for the high-level policy yields:

∇θµJ(θµ,t) =Esh,o,rh∼µ(o|sh)[R
µ(sht , ot)

∇θµ logµ(o|sht )],
(13)

and the gradient for the low-level policy yields:

∇θπJ(θπ,t; ot′) =Esl,a,rl∼π(a|sl;ot′ )[R
π(slt, at; ot′)

∇θπ log π(a|slt; ot′)].
(14)

The entire training process is described at Algorithm 1.

Algorithm 1: Training Procedure of HRL
1 Calculate ht for each word in the sentence with Bi-LSTM ;
2 Initiate state sh0 ← 0 and time step t← 0;
3 for i← 1 to Text Length do
4 t← t+ 1 ;
5 Calculate sht by Eq. (1);
6 Sample ot from sht by Eq. (3);
7 Obtain reward rht by Eq. (4);
8 if ot 6= NR then
9 for j ← 1 to Text Length do

10 t← t+ 1 ;
11 Calculate slt by Eq. (6);
12 Sample al

t from slt by Eq. (7);
13 Obtain reward rlt by Eq. (8);
14 end
15 Obtain low-level final reward rlfin;
16 end
17 end
18 Obtain high-level final reward rhfin by Eq. (5);
19 Optimize the model with Eq. 13 and Eq. (14);

Experiments
Experimental Setting
Datasets We evaluated our model on the New York Times
corpus which is developed by distant supervision and con-
tains noisy relations. The corpus has two versions: 1) The
original version generated by aligning the raw data with

Freebase relations (Riedel, Yao, and McCallum 2010); 2)
A smaller version of which the test set was manually anno-
tated (Hoffmann et al. 2011). We name the original version
as NYT10, and the smaller version as NYT11. We split some
of the training data from NYT11 to construct NYT11-plus,
which will be described later.

We filtered the datasets by removing 1) the relations in
the training set whose relation type does not exist in the test
set; 2) the sentences that contain no relations at all. Such
a preprocess is also in line with the settings in the literature
(for instance, Tagging). All the baselines are evaluated in this
setting for fair comparison. The statistics of the two filtered
datasets are presented in Table 1.

Dataset NYT10 NYT11

# Relation types 29 12
# Training sentences 70,339 62,648
# Training relations 87,739 74,312
# Test sentences 4,006 369
# Test relations 5,859 370

Table 1: Statistics of the datasets.

For each dataset, we randomly chose 0.5% data from the
training set for validation.

Parameter Settings All hyper-parameters are tuned on
the validation set. The dimension of all vectors in Eq. (1),
(2) and (6) is 300. The word vectors are initialized using
Glove vectors (Pennington, Socher, and Manning 2014) and
are updated during training. Both relation type vectors and
entity tag vectors are initialized randomly. The learning rate
is 4e − 5, the mini-batch size is 16, α = 0.1 in Eq. (9),
β = 0.9 in Eq. (5), and the discount factor γ = 0.95.

Evaluation Metrics We adopted standard micro-F1 to
evaluate the performance. We compared whether the ex-
tracted entity mentions can be exactly matched with those
in a relation. A triplet is regarded as correct if the relation
type and the two corresponding entities are all correct.

Baselines We chose two types of baselines: one is
pipelined methods (FCM), and the other is joint learning
methods which include feature-based methods (MultiR and
CoType) and neural methods (SPTree, Tagging and CopyR).
We used open source codes and conducted the experiments
by ourselves.
FCM (Gormley, Yu, and Dredze 2015): a compositional
model that combines lexicalized linguistic contexts and
word embeddings to learn representations for the substruc-
tures of a sentence in relation extraction5.
MultiR (Hoffmann et al. 2011): a typical distant supervision
method performing sentence-level and corpus-level extrac-
tion, which uses multi-instance weighting to deal with noisy
labels in training data.
CoType (Ren et al. 2017): a domain-independent framework
by jointly embedding entity mentions, relation mentions,

5As FCM cannot detect entity mentions alone, we used the NER
results and related features obtained from another baseline CoType.



text features, and type labels into representations, which for-
mulates extraction as a global embedding problem.
SPTree (Miwa and Bansal 2016): an end-to-end relation ex-
traction model that represents both word sequence and de-
pendency tree structures using bidirectional sequential and
tree-structured LSTM-RNNs.
Tagging (Zheng et al. 2017): an approach that treats joint
extraction as a sequential labeling problem using a tagging
schema where each tag encodes entity mentions and relation
types at the same time.
CopyR (Zeng et al. 2018): a Seq2Seq learning framework
with a copy mechanism for joint extraction, where multiple
decoders are applied to generate triples to handle overlap-
ping relations.

Main Results

Model NYT10 NYT11
Prec Rec F1 Prec Rec F1

FCM – – – .432 .294 .350
MultiR – – – .328 .306 .317
CoType – – – .486 .386 .430
SPTree .492 .557 .522 .522 .541 .531
Tagging .593 .381 .464 .469 .489 .479
CopyR .569 .452 .504 .347 .534 .421

HRL .714 .586 .644 .538 .538 .538

Table 2: Main results on relation extraction.

The results on relation extraction are presented in Table
2. Noticeably, there is a significant gap between the per-
formance on noisy data (NYT10) and that on clean data
(NYT11) as all the models are trained on noisy data. It can
be seen that our method (HRL) outperforms the baselines
on the two datasets. Significant improvements can be ob-
served on NYT10, which indicates that our method is more
robust to noisy data. Results on NYT11 show that neural
models (SPTree, Tagging and CopyR) are more effective
than pipelined (FCM) or feature-based (MultiR and CoType)
methods. CopyR is introduced to extract overlapping rela-
tions, but it yields poor performance on the NYT11 test set
where there is almost no overlapping relation in a sentence
(370 relations among 369 sentences). Whereas our model
is still comparable to SPTree and performs remarkably bet-
ter than other baselines. Note that SPTree utilizes more lin-
guistic resources (e.g., POS tags, chunks, syntactic parsing
trees). This implies that our model is also robust to the data
distribution of relations.

Overlapping Relation Extraction
We prepared another two test sets to verify the effectiveness
of our model on extracting overlapping relations. Note that
overlapping relations can be classified into two types.

• Type I: two triples share only one entity within a sentence

• Type II: two triples share two entities (both head and tail
entities) within a sentence

The first set, NYT11-plus, is annotated manually and consists
of 149 sentences split from the original NYT11 training data.
The set contains 210/97 overlapping relations for type I/II
respectively. The second set, NYT10-sub, is a subset of the
test set of NYT10, and has 715 sentences, but without manual
annotation. This set contains 90/2,082 overlapping relations
for type I/II respectively. To summarize, most of the over-
lapping relations in NYT11-plus is of type I; while most in
NYT10-sub is of type II. Table 3 shows the performance of
extracting overlapping relations by different approaches.

Model NYT10-sub NYT11-plus
Prec Rec F1 Prec Rec F1

FCM – – – .234 .199 .219
MultiR – – – .241 .214 .227
CoType – – – .291 .254 .271
SPTree .272 .315 .292 .466 .229 .307
Tagging .256 .237 .246 .292 .220 .250
CopyR .392 .263 .315 .329 .224 .264

HRL .815 .475 .600 .441 .321 .372

Table 3: Performance comparison on extracting overlapping
relations.

Results on NYT10-sub show that the baselines are very
weak to extract overlapping relations of type II on the noisy
data, which is consistent with our statement that existing
joint extraction approaches cannot deal with overlapping re-
lations effectively in nature. By contrast, our method did not
deteriorate too much in performance comparing to that in
Table 2, and even obtained a larger gain on precision.

Results on NYT11-plus demonstrate that our method had
a substantial F1 improvement over all the baselines in ex-
tracting overlapping relations of type I on the clean data,
indicating that our method can extract overlapping relations
more accurately. SPTree had a high precision but low recall
since it simply matches one relation type to an entity pair,
suffering from ignoring the case of overlapping relations.
Tagging had low performance in extracting overlapping re-
lations because it assigns a unique tag to an entity even
if that entity participates in overlapping relations. Though
CopyR claimed that it can extract overlapping relations of
both types, it fails to extract the relations from clean data ef-
fectively as it strongly relies on the annotation of the noisy
training data.

To conclude, we can see that extracting overlapping re-
lations is more challenging by comparing results in Table
2 and those in Table 3, and our model is better in extracting
two types of overlapping relations no matter the data is noisy
or clean.

Interaction between the Two Policies
To justify the effectiveness of integrating entities into a rela-
tion and how the interactions are built between the two poli-
cies, we investigated the performance on relation detection
(classification). In this setting, a prediction is treated as cor-
rect as long as the relation type is correctly predicted. The
prediction is derived from the high-level policy.



Figure 5: Extraction examples by our model. The words in a bracket represents an entity extracted by the model. Es stands for
source entity and Et for target entity. A predicted relation indicator is marked in background color (e.g. “Murdoch” in the first
instance). The entities which form a triple are bracketed in the same color.

Model NYT11 NYT11-plus
Prec Rec F1 Prec Rec F1

FCM .502 .479 .490 .447 .327 .378
MultiR .465 .439 .451 .423 .336 .375
CoType .558 .558 .558 .491 .413 .449
SPTree .650 .614 .631 .700 .343 .460
CopyR .480 .714 .574 .626 .426 .507

HRL-Ent .676 .676 .676 .577 .321 .413
HRL .654 .654 .654 .626 .456 .527

Table 4: Performance comparison on relation detection.

The results in Table 4 demonstrate that our method per-
forms better in relation detection on both datasets. The
improvements on NYT11-plus are more remarkable as our
paradigm is more powerful to extract multiple relations from
a sentence. The results indicate that our extraction paradigm
which regards entities as arguments of a relation can better
capture the relational information in the text.

When removing the low-level entity extraction policy
from our model (HRL-Ent), the performance has changed
slightly on NYT11 because each sentence almost contains
only one relation in this test set (370 relations among 369
sentences). In this case, the interaction between the two poli-
cies has almost no influence on relation detection. However,
dramatic drops are observed on NYT11-plus where we have
327 relations from 149 sentences, implying that our method
(HRL) captures the dependency across multiple extraction
tasks and the high-level policy benefits from such interac-
tions. Therefore, our hierarchical extraction framework in-
deed enhances the interaction between relation detection and
entity extraction.

Case Study
Fig. 5 presents some extraction examples by our model to
demonstrate the ability to extract overlapping relations. The
first sentence shows the case that an entity pair has mul-
tiple relations (type II). Two relations (Rupert Murdoch,
person-company, News Corporation) and (News Cor-
poration, company-founder, Rupert Murdoch) share
the same entity pair but have different relation types. The
model first detects the relation type person-company
at “Murdoch”, and then detects the other relation type

company-founder at the comma position, just next to
the word “Murdoch”. This shows that relation detection is
triggered when sufficient evidence has been gathered at a
particular position. And the model can classify the same en-
tities into either source or target entities (for instance, Ru-
pert Murdoch is a source entity for person-company
whereas a target entity for company-founder), demon-
strating the advantage of our hierarchical framework which
can assign dynamic tags to words conditioned on different
relation types. In addition, Rupert Murdoch has a relation
with Australia, where the two entities locate far from each
other. Though this is more difficult to detect, our model can
still extract the relation correctly.

The second sentence gives another example where an en-
tity is involved in multiple relations (type I). In this sen-
tence, (Steven A. Ballmer, person-company, Microsoft)
and (Bill Gates, person-company, Microsoft) share the
same relation type and target entity, but have different source
entities. When the agent scans to the word “Microsoft”, the
model detects the first relation. The agent then detects the
second relation when it scans to the word “Gates”. This fur-
ther demonstrates the benefit of our hierarchical framework
which has strengths in extracting overlapping relations by
firstly detecting relation and then finding the entity argu-
ments. In addition, our model predicts another relation (Bill
Gates, founder-of, Microsoft), which is wrong for this
sentence because there is no explicit mention of the relation.
This may result from the noise produced by distant supervi-
sion, where there are many noisy sentences that are aligned
to that relation.

Conclusion and Future Work
In this paper, we present a hierarchical extraction paradigm
which approaches relation extraction via hierarchical rein-
forcement learning. The paradigm treats entities as the ar-
guments of a relation, and decomposes the relation extrac-
tion task into a hierarchy of two subtasks: high-level relation
indicator detection and low-level entity mention extraction.
The high-level policy for relation detection identifies multi-
ple relations in a sentence, and the low-level policy for entity
extraction launches a subtask to further extract the related
entities for each relation. Thanks to the nature of this hi-
erarchical approach, it is good at modeling the interactions
between the two subtasks, and particularly excels at extract-
ing overlapping relations. Experiments demonstrate that our



approach outperforms state-of-the-art baselines.
As future work, this hierarchical extraction framework

can be generalized to many other pairwise or triple-wise ex-
traction tasks such as aspect-opinion mining or ontology in-
duction.
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