
Aggregating E-commerce Search Results from Heterogeneous
Sources via Hierarchical Reinforcement Learning

Ryuichi Takanobu∗
Institute for AI, State Key Lab of
Intelligent Technology & Systems,

DCST, Tsinghua University
Beijing, China

gxly15@mails.tsinghua.edu.cn

Tao Zhuang∗
Alibaba Group

Hangzhou, China
zhuangtao.zt@alibaba-inc.com

Minlie Huang†
Institute for AI, State Key Lab of
Intelligent Technology & Systems,

DCST, Tsinghua University
Beijing, China

aihuang@tsinghua.edu.cn

Jun Feng‡
State Grid Zhejiang Electric Power

Co., LTD
Hangzhou, China

Haihong Tang
Alibaba Group

Hangzhou, China

Bo Zheng
Alibaba Group

Hangzhou, China

ABSTRACT
In this paper, we investigate the task of aggregating search re-
sults from heterogeneous sources in an E-commerce environment.
First, unlike traditional aggregated web search that merely presents
multi-sourced results in the first page, this new task may present
aggregated results in all pages and has to dynamically decide which
source should be presented in the current page. Second, as pointed
out by many existing studies, it is not trivial to rank items from
heterogeneous sources because the relevance scores from different
source systems are not directly comparable. To address these two
issues, we decompose the task into two subtasks in a hierarchical
structure: a high-level task for source selection where we model the
sequential patterns of user behaviors onto aggregated results in dif-
ferent pages so as to understand user intents and select the relevant
sources properly; and a low-level task for item presentation where
we formulate a slot filling process to sequentially present the items
instead of giving each item a relevance score when deciding the
presentation order of heterogeneous items. Since both subtasks can
be naturally formulated as sequential decision problems and learn
from the future user feedback on search results, we build our model
with hierarchical reinforcement learning. Extensive experiments
demonstrate that our model obtains remarkable improvements in
search performance metrics, and achieves a higher user satisfaction.

CCS CONCEPTS
• Information systems → Combination, fusion and feder-
ated search; Online shopping; • Computing methodologies →
Reinforcement learning; Learning from implicit feedback.

∗Both authors contributed equally to this research.
†Corresponding author: Minlie Huang.
‡Participated in this work while at Tsinghua University.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313455

KEYWORDS
aggregated search, vertical, user feedback, hierarchical reinforce-
ment learning

ACM Reference Format:
Ryuichi Takanobu, Tao Zhuang, Minlie Huang, Jun Feng, Haihong Tang,
and Bo Zheng. 2019. Aggregating E-commerce Search Results from Hetero-
geneous Sources via Hierarchical Reinforcement Learning. In Proceedings
of the 2019 World Wide Web Conference (WWW’19), May 13–17, 2019, San
Francisco, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3308558.3313455

1 INTRODUCTION
The process of aggregating search results from heterogeneous
sources is usually referred to as aggregated search [17]. Different
from a meta-search engine or search federation which assumes that
all distributed sources contain homogeneous content and applies
the same ranking function to each source for result fusion [1], an
aggregated search system is expected to support heterogeneous
information seeking from different sources. When a user issues a
query, the search system should integrate relevant results from each
specialized search system, called vertical, into one Search Engine
Result Page (SERP).

Existing research on search result aggregation has focused on
web search [4, 11, 21], while in this paper, we study the task in
E-commerce search with one of the largest E-commerce search
services in the world: Taobao.com. Fig. 1 illustrates that traditional
E-commerce search can be augmented with blog posts that share
purchasing experiences, or topic groups that cluster products with
the same brand or from the same shop to facilitate finding similar
products. As a matter of fact, user study in Taobao Search shows
that mixing products with topic groups and blog posts in a SERP
can greatly improve the user experiences of product search and
online shopping. In this study, we aggregate two other verticals in
product search, namely the topic and blog verticals. Given a query,
these verticals return topic groups and blog posts respectively.

In web search [4, 11, 21], result aggregation is performed only
once at the first page for each query. While in E-commerce search,
aggregation is performed multiple times for a query, one for each

https://doi.org/10.1145/3308558.3313455
https://doi.org/10.1145/3308558.3313455
https://doi.org/10.1145/3308558.3313455

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Ryuichi Takanobu, et al.

Figure 1: An aggregated search example for the query
“dress”, where the topic group from the topic vertical is
shown in the 2nd position, and the blog post from the blog
vertical in the 5th position.

page. The aim of page-wise aggregation in E-commerce search is
to keep diversity to attract and retain diverse customers. This is a
major difference from previous web search aggregation in which a
single decision is made only for the first page.

In this paper, we decompose search result aggregation in E-
commerce search into two subtasks: source selection and item pre-
sentation. Source selection decides whether to present the search
results of a certain source type in the current page, which depends
on the user behaviors onto the items that have been already pre-
sented in previous pages. For example, if a user issued the query
“sport shoes”, and clicked several products with the same brand,
presenting a topic group with the same brand in the next page
may be a good decision. Then the validity of search results can be
examined afterwards by analyzing the long-term gains like click
through rate (CTR). So this process is a sequence of decisions and
can be modeled with reinforcement learning (RL) [32], which helps
better understand user intents to present more relevant aggregated
search results.

The other subtask, item presentation, is to decide the presentation
order of the items from heterogeneous sources, which requires to
estimate the relevance scores of all items in a unified way. However,
items from different sources have different relevance estimation
models [2, 16, 28], thereby making the scores not comparable be-
tween different sources. This is termed the relevance ranking issue.
To avoid this, we formulate the item presentation task as a slot
filling problem where the training signal comes directly from the
user feedback. In this formulation, each display position in a page
is regarded as a slot, and the slots in a page will be filled sequen-
tially. At each position, an item presenter is trained to choose the
most relevant item from the candidate sources, and then fills in the
slot with the selected item. Once again, the slot filling process is
consistent with the sequential nature of user behaviors, which can
be viewed as a sequential decision problem and handled by RL.

Given the above decomposition, we propose a hierarchical rein-
forcement learning (HRL) model [5] consisting of two components:
a source selector that decides which sources should be selected
at the current page, and an item presenter that decides the pre-
sentation order of the items selected from the selected sources in
a page. The model fully utilizes the sequential characteristics of
user behaviors across different pages to decide both the sources
and items to be presented. The hierarchical framework enables the
model to utilize the immediate user feedback in the current page
as well as the future user feedback on the entire search session.

To summarize, our main contributions are as follows:
• We propose a novel search result aggregation method that
formulates a semi-Markov decision process which is com-
posed of a high-level policy for source selection and a low-
level policy for item presentation.

• We present aggregated search results for each page during
source selection and capture the sequential patterns of user
behaviors onto aggregated items in different pages.

• We formulate the item presentation subtask as a slot filling
problem in order to avoid the relevance ranking issue on
displaying heterogeneous items.

Results demonstrate that our proposed model can improve user
experience andmake significant advancement onmarketingmetrics
like CTR and GMV over other baselines.

2 PRELIMINARIES
2.1 Reinforcement Learning
Reinforcement learning (RL) [32] is a learning paradigm that an
agent learns from the interactions with the environment through
sequential exploration and exploitation. Generally, RL follows a
Markov Decision Process (MDP) formulation.

Let anMDP be defined as < S,A,P, r ,γ >, whereS denotes the
state space,A denotes the set of possible actions, P : S×A×S →

[0, 1] denotes the transition function to generate the next state
from current state-action pair, r : S × A × S → R denotes the
reward function and γ ∈ [0, 1] is an discount factor . Given an
MDP, a trajectory τ = s0,a0, r0, s1, · · · that starts from state s0 is
sampled from a policy π : S × A → [0, 1] that specifies the action.
The aim of RL is to find an optimal policy π∗ which maximizes
the expected cumulative reward (return) Rt = E[

∑∞
k=0 γ

krt+k] at
each time step t . For an agent following a policy π , the Q-value

Aggregating E-commerce SRs from Heterogeneous Sources via HRL WWW ’19, May 13–17, 2019, San Francisco, CA, USA

of the state-action pair (s,a) is defined as Qπ (s,a) = E[Rt |st =
s,at = a,π] = Es ′∼P(· |s,a)[r + γEa′∼π (s ′)[Qπ (s

′,a′)]|s,a], which
measures the average discounted long-term rewards. In the practice
of training, the action is often selected by an ϵ −дreedy policy that
follows the greedy policy a = argmaxa′ Q(s,a′) with probability
1−ϵ for exploitation and selects a random action with probability ϵ
for exploration, in order to collect desired transitions for learning.

With the advance of deep neural networks, deep reinforcement
learning (DRL) has been widely used in various search tasks in
recent two years [12, 25, 41].

2.2 Options Framework
Options framework [33] extends the usual MDP so that it involves
temporal abstractions over the action space in the context of HRL.
At each step, the HRL agent chooses either a “one-step” action
(primitive action) or a “multi-step” action (option). An option o =
(π ,I, β) ∈ O defines a policy π over actions (either primitive or
option), includes an initiation set I ⊂ S that option o is available
iff state s ∈ I , and can be terminated according to a stochastic
function β : S → [0, 1]. An MDP endowed with a set of options
is extended to a Semi-Markov Decision Process (SMDP). Given
an SMDP, a trajectory τ is sampled from a policy µ over options.
Each option ok launches a new subtask where a sub-trajectory τk is
sampled from the corresponding policy π over actions. The agent
cannot select next option (possibly in a recursive way) until current
option terminates according to the termination function β .

Recently, several studies have demonstrated that combining DRL
with predefined subgoals delivers promising results in challenging
environments like Atari [18], Minecraft [35], relation extraction
[34] and task-oriented dialogues [26].

3 RELATEDWORK
In recent years, search engines are able to search heterogeneous
sources that contain different types of contents (e.g. news, maps,
videos, images). Studies have shown that the aggregated view helps
expose the content in other sources, thus offering the chance for
the user to explore different sources in search[7, 10]. Existing ag-
gregated search systems, which merge all heterogeneous results
from various search services in one SERP, mostly adopt a pipeline
architecture as illustrated in Fig. 2. In general, the architecture con-
tains two key components, one is source selection which decides
the vertical sources from which items should be ranked, and the
other is item presentation which decides the presentation order of
the heterogeneous items.

3.1 Vertical Selection
The first subtask of aggregated search is vertical selection, also
called source selection. The goal of vertical selection is to decide
which verticals are to be presented in a SERP, e.g. whether it is
necessary to present the videos of “violin” when a user types query
“violin”. Several works [20, 37, 44] have found that participants
rated the system negatively when irrelevant vertical results were
presented in an aggregated SERP. It is thus essential to evaluate the
relevance of a source to a query.

Most existing approaches use a binary classifier for each vertical
to make a decision on whether to present a vertical result in a

Figure 2: Task flow of search aggregation on heterogeneous
sources.

page [15, 19, 36]. From this perspective, each classifier can adopt a
different feature representation and focus on the features that are
uniquely predictive for its corresponding vertical. Human judges
are employed to generate ground-truth labels for the verticals in
some approaches [4, 11]. Other approaches [16, 28] leverage user
search logs and assign a binary label based on user behaviors.

As previous studies focused on web search, vertical selection is
only launched one time when a user issues a query. For instance,
the video vertical will only appear once in the first SERP for query
“Titanic”, but no vertical will be shown again in the following pages
unless the user types a new query. However, the goal of E-commerce
search is quite different from web search [45]. With respect to ag-
gregated search, the main difference between web and E-commerce
lies in that the latter needs to present the aggregated search re-
sults in each page to meet user search demand, which requires the
system to capture the sequential patterns of user behaviors onto
aggregated results.

3.2 Vertical Presentation
The second subtask, vertical presentation, or item presentation, is
to rank the candidate items selected from verticals. For instance,
should the videos of “violin” be positioned above or below the web
links in a page? In general, the system presents the most relevant
items at the top, which are more likely to be viewed by users [9, 31].
Existing approaches to vertical presentation can be classified into
three types: pointwise, pairwise and attention-based approaches.

Pointwise approaches train an independent classifier per ver-
tical to predict the relevance of the corresponding vertical. Click
models were proposed to predict the user response (i.e. click or skip)
to vertical results [16, 38, 39]. FCM [8] considered the rank of the
verticals, their visual salience, and the distance between them and
the current item. Markov et al. [22] proposed a click model that esti-
mated different probabilities for results above or below the vertical
as well. Others directly trained vertical-specific classifiers to predict
the relevance score of a source to a query, which was used to decide
the position of each vertical [6, 27, 30]. Ponnuswami et al. [28]
trained a gradient boosted decision tree to learn relevance scores

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Ryuichi Takanobu, et al.

and ranked each vertical individually using a computed threshold.
Although it is simple and intuitive to implement pointwise models,
they suffer from the relevance ranking issue that the prediction
scores from individual classifiers are not directly comparable.

Pairwise approaches learn to predict the relative preference be-
tween candidate sources to be displayed in a SERP. Arguello et al.
[2] trained one binary classifier for user preference per vertical pair,
and derived a final ranking from the predicted preferences. The
pairwise method solves the relevance ranking issue, but in return,
it requires a complex ranking principle among verticals and results
in a large number of pairwise classifiers.

The recent study [42] adapted an attention-based method that
applied different weights to different information sources for rel-
evance estimation. It has gained a significant improvement on
ranking relevance, however, it requires a large number of data
annotations on relevance score to support model training.

4 HIERARCHICAL SEARCH AGGREGATION
We develop a deep hierarchical reinforcement learning algorithm
for aggregated search in this paper. The model consists of a high-
level source selection policy and a low-level item presentation
policy. The entire process works as shown in Fig. 3. When a new
search request arrives, the source selector decides which sources
to present on the current page. The item presenter then decides
the presentation order of the relevant items from selected sources.
The user search session continues when the user scrolls to the next
page, and ends when he leaves the platform or types a new query.
Both policies are trained with the DQN [24] algorithm. The rewards
for policy training come from implicit user feedback, instead of any
artificial metrics [3, 43], so that it can learn from user behaviors
straightforwardly.

In the following subsections, we will present the details of the
two policies, deep Q network architecture, and model optimization.
The notations used in this paper are summarized in Table 1.

Notation Description

x Search request
SR j Set of all items of source type j
mk
j K-th item of source type j

nj (x) The number of items of type j given the request x
p, P Slot position on the SERP, Result presentation

s , S State, State set
a, A Primitive action, Primitive action set
o, O Option, Option set
re , r i Extrinsic reward, Intrinsic reward
γ Discount factor
R Return (discounted cumulative reward)
µ, π Source selector policy, Item presenter policy

Table 1: Notations of aggregated search and HRL.

4.1 Source Selection with High-level Policy
The high-level RL process aims to decide which sources should
be selected in each page. The high-level policy µ perceives the

Figure 3: The hierarchical architecture on aggregated search.
This example of user search session is composed of three
search requests (page 1 to 3). A stands for the products, and
B,C · · · for the items of other source types.

high-level state se and selects an option o that tells what sources
to display. The option o will trigger the low-level policy to decide
how to present the items from these selected sources. The high-
level source selector tries to capture the sequential patterns of user
behaviors onto aggregated results in different pages.

4.1.1 Option. An option o ∈ O refers to a multi-step action [33]
that selects the relevant sources to display. The core search, which
is the product search in our case, must be selected, while verticals
can either be selected or not. So if there are N verticals, the size of
the option set is |O| = 2N . The agent samples an option o according
to µ, then the control of the agent transfers to the low-level policy.
The option lasts until the low-level RL process terminates, then the
source selector continues to execute the next option.

4.1.2 State. The state set ∈ S of the high-level RL process at time
step t is represented by: 1) the search request x , 2) the triggered
search source results SR(x), and 3) the latest option ot ′ where t −t ′
is the duration of ot ′ . Then the state vector ϕ(set) is the concatena-
tion of the embedding vector of each part. It should be noted that
the vector of source type SR j is represented by the mean value
of all item vectors of that type, i.e. e(SR j (x)) =

1
nj (x)

∑
k e(mk

j (x))

where e(m) is the item vector ofm. In particular, the vector of a
certain source is represented by zeros if the result of that type is
empty. Then the vector of entire source results e(SR) is derived
from the concatenation of e(SR j) from all source types.

4.1.3 Extrinsic reward. The extrinsic reward re is given to the
source selector to evaluate the global performance. It is derived
from the mean value of the intrinsic return from the low-level

Aggregating E-commerce SRs from Heterogeneous Sources via HRL WWW ’19, May 13–17, 2019, San Francisco, CA, USA

process, which can be formulated as follows:

ret =
1
l
Rit =

1
l

l−1∑
k=0

γkr it+k , (1)

where l is the duration of the option ot . The average return is
calculated to prevent the tendency that the source selector greedily
chooses all triggered sources to obtain more rewards. The definition
of intrinsic reward will be introduced soon later.

4.2 Item Presentation with Low-level Policy
The low-level RL process aims to decide the presentation order of
the items from the candidate sources SR(x) chosen by the high-
level source selector. Note that the items from each source have
been ranked according to its private vertical, and all items from
verticals can be interleaved with results from other sources. Each
display position is regarded as a slot and the entire presentation
subtask starts by filling an item into the top slot of the page, and
then the second slot, etc. At each step, the low-level RL policy π
takes the corresponding option o and the low-level state si as input,
and outputs a primitive action a that tells which source to display at
the current position. As a result, the agent does not give a relevance
score to each item thus avoiding the relevance ranking issue.

Considering that the source selector has notified which sources
are selected to display, the number of slots on the page can be
determined by l =

∑
SR j ∈SR

nj (x). The agent reaches the subgoal
when all the slots in a page have been filled, thus the number of
slots is equal to the time duration of the option, and the termination
function β : S → {0, 1} is deterministic in our setting. Once it is
terminated, the control of the agent will return to the high-level
process.

4.2.1 Primitive action. A primitive action a ∈ A refers to a one-
step action that chooses a certain source type, so |A| = 1+N given
the core search and N verticals. Each source can be seen as a stack
with its items in descending order of relevance to the search request
x . If a certain source is selected according to π , the top item at the
stack of this source is displayed in the current position, as shown
in Fig. 4. When a source stack is empty, the source is excluded from
the action space. In this way, we simplify the relevance ranking
problem into a slot filling process to mix different sources: we only
need to decide from which source the top item should be selected,
instead of evaluating the relevance of each source item. Note that
the relative order of the items within the same source type remains
unchanged, the agent simply utilizes the existing ranking list.

4.2.2 State. The state sit ∈ S of the low-level RL process at time
step t is represented by: 1) the search request x , 2) the top items of
candidate sources top(SR(x)), 3) the last primitive action at−1, and
4) the optiono that launches the current subtask, and the state vector
ϕ(sit) is the concatenation of all vectors of each corresponding part.
In order to give an intuitive understanding of top items, we take Fig.
4 as an instance. top(SR) = [A5;B1;C2] before the agent presents
the item at 6th slot position, then top(SR) = [A5;B2;C2] after it
chooses the source type B. So naturally, the vector of candidate
sources e(top(SR)) is represented by the concatenation of the top
item vector e(mtop

j) from each selected source. In addition, similar

Figure 4: Illustration of the proposed slot filling scheme.
There are three sources (A,B,C) and 7+2+2=11 slots in this
example.

to [29], we put options into the low-level state representation as an
additional input throughout the low-level RL process, to make the
selected sources available for the policy π .

4.2.3 Intrinsic reward. The intrinsic reward r i is provided for the
item presenter to indicate how well a particular subtask is com-
pleted. User clicks and transactions are used to form the intrinsic
reward, which is computed as below:

r it = λ ∗ click + (1 − λ) ∗min(ln(1 + pay),δ), (2)

where λ is a weight factor, click ∈ {1,−1} indicates whether the
user clicks or skips the current slot, and pay ∈ [0,+∞) is the price
of the product that the user buys. When the user does not buy
anything, the second term is zeroed as pay = 0. The second term
is also clipped by the value δ to reduce the impact of extreme
observations. In addition, if there is no click or transaction during
the current subtask, a small negative value is added to the intrinsic
reward at the last time step as a penalty.

4.3 Q Network Framework
Deep Q-learning uses a multi-layer neural networks with parame-
ters θ to estimate the Q function. Given an n-dimensional state s ,
it outputs a vector of Q-values over the actions Q(s, ·;θ) : Rn →

R |A | .
In our algorithm, both high-level and low-level policies leverage

the same Q network framework, as shown in Fig. 5. We apply DRQN
[14] by considering the previous context with a recurrent structure
to integrate the underlying correlation between the previous state
and current observation. Eq. 3 refers to the hidden layer and RNN
layer in Fig. 5.

wt = β(Wϕ · ϕ(st) + bϕ),

ht = GRU (wt , ht−1),
(3)

where ϕ(s) is the vector representation of the state s , β is Leaky
ReLU activation function.

Besides, the dueling architecture [40] is introduced as well to get
a more precise policy evaluation in the presence of many similar-
valued actions. It consists of two streams that represent the value

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Ryuichi Takanobu, et al.

Figure 5: Q network framework used in both high and low
level policies.

and advantage functions, and the two streams are combined after-
ward to provide a better estimate of Q-values, i.e. the dueling layer
of Fig. 5.

Q(s,a;θ) = V (s;θ) + (A(s,a;θ) −
1
|A|

∑
a′

A(s,a′;θ)). (4)

The constraint filter is to explicitly perform an element-wise
mask operation on the Q-values to meet some complicated com-
mercial needs. In this way, commercial constraints in a special
situation can be easily satisfied in this framework. For instance, not
displaying any blog posts in the first page can be dealt with by the
source selector via excluding the corresponding source type from
the action space. Similarly, displaying a particular source item at
a pre-specified position can be handled by the item presenter via
excluding the corresponding slot from the slot sequence.

4.4 Hierarchical Policy Learning
Standard DQN is used to minimize the squared error between the
target (Bellman optimality condition) r + γ maxa′ Q(s ′,a′;θ) and
its estimate Q̂(s,a;θ). In the context of HRL, the top-level policy µ
tries to minimize the following loss function at each time step t :

Lµ (θ
e
t) = E(s,o,r,s ′)∼De [(yet −Qµ (s,o;θet))

2],

yet = r + γ
lQµ (s

′, argmax
o′

Qµ (s
′,o′;θet);θ

e−
t),

(5)

where l is the number of steps the option o lasts. Here we apply
experience buffer [23] to smooth over changes in the data distri-
bution. We also employ a target Q network [24] with parameters
θ− to decrease the possibility of divergence or oscillations during
the training process, and double Q-learning [13] to reduce the ob-
served over-estimations caused by traditional Q-learning. Similarly,
we learn the low-level policy π by minimizing the following loss

Algorithm 1: Deep hierarchical policy learning for aggregated
search
Input: Item sets with multiple source types SR and their

search services.
1 Initialize the two policies with parameters { θe , θ i }
2 Initialize replay memories { De , Di } respectively
3 θe− = θe , θ i− = θ i

4 foreach user search session do
5 Initialize high-level state se with current search request x
6 repeat

// Page-level source selection

7 Set option o ={
random sample option o from O, random() < ϵe

argmaxo′ Qµ (se ,o′;θe), otherwise

8 Initialize low-level state si and option duration l
according to o

9 for k = 0 to l − 1 do
// Slot-level item presentation

10 Set primitive action a ={
random sample action a from A, random() < ϵi

argmaxa′ Qπ (si ,o,a′;θ i), otherwise

11 Execute action a, observe intrinsic reward r i (cf.
Eq. 2) and next state s ′i

12 Store transition (si , o, a, r i , s ′i) in Di

13 Randomly sample mini-batches from Di

14 Perform gradient descent on Lπ (θ
i) (cf. Eq. 6 & 8)

15 si = s ′i

16 Assign θ i− = θ i every Ci steps
17 end
18 Obtain extrinsic reward re (cf. Eq. 1) and next state s ′e

19 Store transition (se , o, re , s ′e) in De

20 Randomly sample mini-batches from De

21 Perform gradient descent on Lµ (θ
e) (cf. Eq. 5 & 7)

22 se = s ′e

23 Assign θe− = θe every Ce steps
24 until the session ends
25 end

function:

Lπ (θ
i
t) = E(s,o,a,r,s ′)∼Di [(yit −Qπ (s,o,a;θ it))

2],

yit = r + γQπ (s
′,o, argmax

a′
Qπ (s

′,o,a′;θ it);θ
i−
t),

(6)

given the option o from µ.
Differentiating the loss function with respect to the weights, we

arrive at the following gradient for the high-level policy:

∇θ et Lµ = E(s,o,r,s ′)∼De [(yet −Qµ (s,o;θet))∇θ et Qµ (s,o;θet)], (7)

and similarly, the gradient for the low-level policy yields as below:

∇θ it
Lπ = E(s,o,a,r,s ′)∼Di [(yit −Qπ (s,o,a;θ it))∇θ itQπ (s,o,a;θ it)].

(8)

Aggregating E-commerce SRs from Heterogeneous Sources via HRL WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Note that the initial hidden state of RNN layer should be carried
forward from its previous values ht−1 when sampling actions, but
we zero it at the start of the update so that we do not need to
save ht−1 into replay buffers. The convergence and performance
of such complexity reduction are guaranteed [14]. In addition, we
clip the error term through Huber Loss to improve the stability of
the algorithm.

The entire training process is described in Algo. 1.

5 EXPERIMENTAL SETUP
To evaluate the performance of our proposed approach, we carried
out experiments on the Taobao Search platform, which is one of
the largest E-commerce search services in the world, with over 1
billion user clicks every day. All models in this paper adopt the
online-learning paradigm and are trained on the hourly real-time
search log streaming data.

The online experiment methodology we adopted is called bucket
testing, also known as A/B test. In the bucket testing system of
Taobao Search, several test buckets are set up. And all users are
randomly hashed into these buckets based on their user ids. Each
bucket has the same number of users, and the same distribution of
users. Then each algorithm is deployed on one bucket. The perfor-
mance of an algorithm is estimated using the metrics calculated on
the bucket it is deployed on. In this paper, our online bucket testing
lasted for two weeks, a period long enough to ensure the statistical
stability of our test results.

5.1 Features and Parameter Settings
We aggregated two verticals, namely topic and blog verticals, into
the results of product search. For each RL policy in our model, the
components of state s (i.e. search request x , search source results
SR(x), etc.) are represented by a number of features, which mainly
contains 1) the query features: including the word-segmented to-
kens of the query; 2) user features: including user gender, age, items
user clicked in the previous page; 3) page features: the current page
number; 4) source features obtained from each search services,
including the type and title of a topic group or a blog post.

The parameter settings for the high-level source selector and
low-level item presenter are provided in Table 2.

5.2 Baselines and Evaluation Metrics
In order to show the effectiveness of our HRL model, we imple-
mented several aggregation methods for comparison, which can be
grouped into two categories: rule-based and learning to aggregate
methods, while the latter can be separated into two types: one-stage
and two-stage methods according to the process flow. The one-stage
method is introduced to verify the hierarchical decomposition in
the aggregate search, and the two-stage method is carried out to
validate the RL formulation in each subtask. The details of our
baselines are introduced as follows:

Rule: a rule-based method, where the rule is manually made
for search aggregation according to abundant experience in search
product design. The rule claims that the first page should not present
aggregated results, and the topic and blog verticals will be alter-
nately displayed at fixed positions from the second page when a
topic group or a blog post is available from backends. In a page, the

Hyper-parameter
Setting

Source selector Item presenter

Learning rate 1e-2 1e-4
Optimization algorithm RMSProp RMSProp

Memory D size 5e4 5e5
Mini-batch size 32 32

Target θ− update period C 1e3 1e4
State feature vector size 48 56

Hidden layer size 28 24
RNN layer size 16 12

Discount factor γ 0.95
Weight factor λ in Eq. 2 - 0.3
Clipped to δ in Eq. 2 - 3

Table 2: Hyper-parameter settings

rule displays a topic group at the 4th position, and a blog post at
the 9th position. Note that this simple rule is the benchmark for
comparison with other methods.

Flat RL: a one-stage method. In this paradigm, the aggregation
task is simplified into one stage: for each aggregation request, just
choose the optimal template from a set of predefined templates.
Seven templates are used in this method and are provided in Fig. 6.
Each template clarifies exactly what to fill in each slot. These tem-
plates are designed by human experts familiar with Taobao Search
to ensure good customer experience. The aggregation problem is
solved by a single DQN agent. The state representation and the
reward of this DQN are the same with the high-level state and the
extrinsic reward defined in subsection 4.1 respectively.

Figure 6: The SERP templates for our 1-stage DQN baseline.

BC+RM : a two-stage method similar to [28]. For vertical selection,
it uses a binary classifier for each source to decide whether to
present this source in a page. The binary classifiers are Neural
Networks with 3 hidden layers. The training data for the binary
classifiers come from online search log, where each page view is
a sample. For a vertical in the page, if it is clicked by a user, then

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Ryuichi Takanobu, et al.

Method
Topic group Blog post

CTR ADT COV CTR ADT COV

value (1e-2) gain value gain value (1e-2) gain value (1e-2) gain value gain value (1e-2) gain

Rule 5.24 - 10.56 - 5.60 - 3.43 - 75.78 - 6.47 -
Flat RL 6.08 15.99% 10.62 0.54% 5.98 6.79% 3.92 14.29% 76.69 1.20% 6.76 4.48%
BC+RM 5.59 6.76% 10.68 1.09% 6.03 7.68% 3.69 7.58% 76.99 1.59% 6.75 4.33%
BC+RL 5.60 6.77% 10.66 0.92% 6.00 7.32% 3.73 8.75% 76.69 1.21% 6.82 5.41%
RL+RM 5.52 5.29% 10.75 1.75% 6.09 8.75% 3.60 6.12% 76.46 0.91% 6.87 6.18%
HRL 7.34 40.07% 10.65 0.89% 5.95 6.25% 4.25 23.91% 76.53 0.98% 6.86 6.03%

Table 3: Metrics of online bucket testing on two verticals.

it is a positive sample, otherwise a negative sample. For vertical
presentation, it uses a 3-hidden-layer Neural Network regression
model to score each item. The regression target of the regression
model is the same with the intrinsic reward in Eq. 2.

BC+RL: a two-stage method similar to HRL, which replaces the
high-level source selector with multiple binary classifiers as de-
scribed in BC+RM, but the RL policy for the item presenter remains
unchanged.

RL+RM: a two-stage method similar to HRL, which replaces
the low-level item presenter with a regression model as described
in BC+RM, but the RL policy for the source selector remains un-
changed.

Note that all learning to aggregate methods were pre-trained
on offline data by behavioral cloning prior to online experiments,
so as to mitigate the slow learning and poor performance in the
early stage of online training. The offline data, which contain 60,000
search sessions covering a broad query topics with an average of
11.3 items per page and 13.4 pages per session, were collected from
the user search logs on the Taobao platform.

To evaluate the performance of the algorithms, we use some
common evaluation metrics in search aggregation, including:

Click Through Rate (CTR): the ratio of users who click on a
specific vertical to the number of total users who view the vertical
on a page.

Average Dwell Time (ADT): the mean value of a user’s dwell time
in seconds on a specific vertical.

Coverage (COV): the ratio of the number of slots occupied by a
specific vertical to the total number of slots.

Moreover, we also include an importantmetric in the E-commerce
industry: the Gross Merchandise Volume (GMV) of each search ser-
vice, which is the total revenue of sales made by the product search,
or induced by a vertical in SERPs within a fixed time period.

6 RESULTS
6.1 Online Performance
We show the results of online bucket testing in terms of CTR, ADT
and COV of different verticals in Table 3. Among these threemetrics,
the most important one is CTR, which indicates whether users
clicked the verticals in the aggregated SERP. For each metric in
Table 3, we present its value in the "value" column, and its relative
improvement over the Rule baseline in the "gain" column. The
results in Table 3 show that all the baselines and our HRL model

achieve similar improvement rate on ADT and COV. However, it is
worth noting that the result on CTR differs remarkably among all
the methods.

In general, HRL achieves much better CTR improvement than
all the baselines on both topic and blog verticals. The comparison
to Flat RL shows that our hierarchical decomposition of the RL
process is very effective, achieving better CTR from the histori-
cal user behaviors across different pages as well as the immediate
user feedback in the current page. And the result also indicates
that it is more sensible to allow a model to choose from any posi-
tions when displaying heterogeneous items, rather than restrict the
positions where a vertical can be presented in a page. While the one-
stage method can only use limited aggregation templates to meet
the trade-off between the model performance and the exponential
number growth of templates due to the number of sources, the hier-
archical decomposition of HRL overcomes the exponentially large
action space problem and allows the agent to explore all possible
source combination and item permutation.

The comparisons to BC+RM, BC+RL, RL+RM show that the se-
quential RL modeling in both high-level and low-level aggregation
subtasks is critical for a good performance. A common feature of
these discriminant models is that they all follow the vertical se-
lection and presentation pipeline, but make point-wise decisions,
without the passing of states between sequential decisions as inHRL.
BC+RL considers the user feedback only based on the current page,
while HRL tracks the user behaviors from page to page to under-
stand user intents. The result verifies that it is essential to capture
sequential patterns of user behavior in aggregated E-commerce
search. Similarly, the comparison to RL+RM demonstrates that
HRL also consistently outperforms the baseline that simply ranks
items from heterogeneous sources since it suffers from relevance
ranking issue by giving scores to each vertical, which concludes
that our slot filling process aggregates a more reasonable SERP.

Another importantmetric, the GMVof the aggregated E-commerce
search, that we care about is shown in Table 4. It should be noted
that, due to Alibaba’s business policy, we temporarily cannot ex-
pose the absolute values of GMV. Hence, we report relative GMV
increase over Rule instead, and this will not affect performance
comparison. Because the GMV of aggregated search is the total
merchandised volume of all sources, we report not only the GMV
of topic and blog verticals, but also the GMV of product search in
Table 4.

Aggregating E-commerce SRs from Heterogeneous Sources via HRL WWW ’19, May 13–17, 2019, San Francisco, CA, USA

Method Topic group Blog post Products

Flat RL 38.4% 12.31% -0.47%
BC+RM 19.32% 5.83% -0.41%
BC+RL 20.78% 6.00% -0.37%
RL+RM 17.60% 5.54% -0.20%
HRL 56.49% 16.93% 0.56%

Table 4: The relative GMV increase over Rule. The GMV of
a vertical is computed through the sales value guided by the
presented items of that vertical.

As shown in Table 4, HRL is the only method that increases the
GMV of product search. Although other baselines achieve GMV
increase on the topic and blog verticals, their GMVs on product
search all decrease. For example, Flat RL brings a marked GMV
improvement on topic and blog verticals, at the expense of the
largest GMV drop on product search though. This means that HRL
provides the best user experience in its aggregated SERP, because
even a growth on the COV of topic and blog verticals does not
reduce users’ purchases in product search. Moreover, HRL also
achieves the best GMV increase on the topic and blog verticals,
leading to the best overall GMV increase among all methods.

Figure 7: The relative CTR increase over Rule in different
hours. Each mark indicates the result in the time span be-
tween the current time and next full hour.

To provide more insights on the online experiments, we group
the two-week statistics by different hours of a day to observe the
performance variation over time. For simplicity, we only compare
the relative CTR increase of the two most competitive methods:
Flat RL and HRL. Fig. 7 shows the trend of their CTR increase over
the baseline Rule during different time periods of a day. It can be
seen that the CTR increase does not variate too much at different
hours of a day, and HRL has consistently better CTR improvement
than Flat RL.

6.2 User Evaluation
In order to study the user experience change caused by our HRL ag-
gregation method, we invite 50 users of Taobao Search to evaluate
the quality of our aggregated result against that of the rule-based
baseline: Rule, which is the old online aggregationmethod of Taobao
Search and has been online serving for several years. The evaluation
is performed on a fixed query set: 200 popular queries covering 13
salient product categories in Taobao. This query set is selected by
third-party experts on Taobao platform. A user is asked to search
each query in both our and the old aggregation environments si-
multaneously, without knowing which environment is the old one.
And the aggregated results of the two environments, designated by
A and B, are presented to the user side-by-side. The user can browse
the results, click items, scroll to the next page, and so on. And the
user provides a grade from {"System A better", "Same/cannot judge",
"System B better"} on each vertical for this query. Then we translate
the user’s grade to {"New System better", "Same/cannot judge", "Old
System better"}, where the "New System" refers to HRL and the
"Old System" refers to Rule. The distribution of user grades on each
vertical is shown in Table 5.

Vertical New system better Same Old system better

Topic 30.35% 67.98% 1.67%
Blog 26.14% 72.53% 1.33%
Table 5: The distributions of user evaluation grades.

The results in Table 5 show that user experience grades are the
same on about 70% of the queries. In spite of this, HRL provides
better user experience than the baseline most of the times on the
rest 30% of the queries.

To understand how HRL improves user experience, every time
when a user thinks the new system is better, we inquire about his
reason for this preference. And we also ask them to group their
reasons into three groups as follows:

• Better behavior relevance: In HRL, the presented verticals
are more relevant to the user’s previous behaviors.

• Better query relevance: In HRL, the presented verticals are
more relevant to the query.

• Others: other reasons.

Vertical Behavior relevance Query relevance Others

Topic 42% 33% 25%
Blog 37% 35% 28%

Table 6: Distributions of reasons why new system is better.

The results in Table 6 show that HRL contributes to both user
behavior relevance and query relevance. We present two cases here
to give some clue that how user experience is improved.

A case for better user behavior relevance is as follows: a user
issues the query "running shoes", and clicks several products with
the same brand: "Nike" on the first page, then on the next page the
topic group titled "Nike shops with discounts" is presented at the

WWW ’19, May 13–17, 2019, San Francisco, CA, USA Ryuichi Takanobu, et al.

second position in ourHRL aggregated result, which is very relevant
to the user’s behavior. In contrast, no topic group is presented by
the baseline in the aggregated result on the next page. In HRL,
user behaviors in previous pages are encoded into the RNN layer
hidden states in the Q network shown in Fig. 5. So user behaviors in
previous pages are passed on to the next page for decision making
in HRL, which helps perceive user behavior relevance. Besides, HRL
can also capture sequential patterns of user behavior by learning
from the long-delayed user feedback across the whole user search
session.

A case for better query relevance is as follows: a user issues the
query "women’s long dress autumn Vero Moda", which is very spe-
cific in brand, season and style. The blog post titled "Introduction to
the world of women’s dresses", which gives a general introduction
to women’s dresses, is not presented in the aggregated result of
HRL, whereas it is presented in the baseline’s aggregated result. The
user prefers our aggregated result because she thinks the blog post
is too general thus not meeting her specific needs. With query and
blog title features as input, HRL is able to identify that the general
introduction of the blog post is not relevant enough to the query
she inputs.

6.3 Training Analysis
To offer a detail training analysis of HRL, we investigate the training
procedure of the high-level RL process that takes multi-step actions.
Two strategies are designed for the source selector. (I) One is the
proposed one in section 4.1 & 4.4 that the extrinsic reward is the
mean value of the intrinsic return from the item presenter, i.e. the
same as Eq. 1, and the optimization target of Q network (yet in
Eq. 5) is discounted by γ l . (II) The other is to regard the high-
level RL process as a simple RL process that takes one-step actions.
Under this setting, the extrinsic reward is directly equivalent to the
mean value of the intrinsic rewards, i.e. ret =

1
l
∑l−1
k=0 r

i
t+k , then the

training target of source selector policy in Eq. 5 is similar to that in
Eq. 6: yet = r + γQµ (s

′, argmaxo′ Qµ (s
′,o′;θet);θ

e−
t).

The learning curves of the two strategies are demonstrated in Fig.
8, where the blue and orange curves correspond to strategy (I) and
(II) respectively. It is clear that the proposed strategy (I) converges
well as the training procedure proceeds while the strategy (II) di-
verges dramatically. This result shows that it is necessary to handle
a multi-step RL process in a proper way to guarantee its conver-
gence. From another perspective, the strategy (I) puts more weight
on the items presented in the top slots, which is consistent with the
position bias in most search area that top-ranked search results at-
tract more clicks, so the agent can better understand the sequential
patterns of user behavior and learn from such data effectively.

7 CONCLUSION AND DISCUSSION
We have studied the search aggregation problem in a large E-
commerce search service and proposed an effective HRL aggrega-
tionmethod. Different fromweb search aggregation, the E-commerce
aggregation needs to be performed for each page, leading to multi-
ple and sequential aggregation decisions for one query. In light of
this, we propose a hierarchical aggregation model for E-commerce
search aggregation. Our HRL model naturally fits the two-stage
decomposition of the aggregated search task: a high-level RL for

Figure 8: Loss curve of high-level source selector between
different training strategies. Blue curve for strategy (I) and
orange curve for strategy (II). The horizontal axis is the
training iteration, and the vertical axis is the loss value in
log scale.

source selection and a low-level RL for item presentation. The
source selector models user interactions on aggregated results
across pages to capture the sequential patterns of user behavior, and
the item presenter formulates a slot filling process that sequentially
presents the heterogeneous items to avoid the relevance ranking
issue. In this manner, the HRL model can fully learn from user
feedback in the current page as well as in the entire search session.

We perform online bucket testing on Taobao Search platform
and compare our HRL method with several baselines. The results
show that our method contributes a substantial improvement over
the baselines for all verticals. Moreover, it also boosts the GMV of
product search and achieves the best overall GMV among all the
models. User study also demonstrates that it improves user expe-
rience by displaying better aggregated results that are relevant to
user behaviors and needs. Note that our method can easily combine
new verticals into an aggregated search system.

One limitation of the proposed algorithm may lie in the auto-
matic offline evaluation. All we can get from the offline data is the
records of user behaviors on the presented results, so it is difficult
to infer the user feedback on the unseen SERPs without full anno-
tations of the heterogeneous item relevance as we train our model
in a RL setting. However, sufficient experiments including bucket
testing and user study indicate that our method indeed shows its
effectiveness on the search aggregation. Future research will be fo-
cused on the application of our HRL model in different E-commerce
verticals and other scenarios.

ACKNOWLEDGEMENTS
This work was jointly supported by the National Key R&D Program
of China (Grant No. 2018YFC0830200) and the National Science
Foundation of China (Grant No.61876096/61332007). We would also
like to thankMr. Xiaoyi Zeng, our colleague in Alibaba, for constant
support and encouragement.

Aggregating E-commerce SRs from Heterogeneous Sources via HRL WWW ’19, May 13–17, 2019, San Francisco, CA, USA

REFERENCES
[1] Jaime Arguello. 2017. Aggregated search. Foundations and Trends in Information

Retrieval 10, 5 (2017), 365–502.
[2] Jaime Arguello, Fernando Diaz, and Jamie Callan. 2011. Learning to aggregate

vertical results into web search results. In Proc. 20th ACM Int. Conf. Information
and Knowledge Management. 201–210.

[3] Jaime Arguello, Fernando Diaz, Jamie Callan, and Ben Carterette. 2011. A method-
ology for evaluating aggregated search results. In Proc. 33rd European Conf. In-
formation Retrieval. 141–152.

[4] Jaime Arguello, Fernando Diaz, Jamie Callan, and Jean-Francois Crespo. 2009.
Sources of evidence for vertical selection. In Proc. 32nd Int. ACM SIGIR Conf.
Research and Development in Information Retrieval. 315–322.

[5] Andrew G Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems 13 (2003), 341–379.

[6] Horatiu Bota, Ke Zhou, Joemon M Jose, and Mounia Lalmas. 2014. Composite
retrieval of heterogeneous web search. In Proc. 23rd Int. Conf. World Wide Web.
119–130.

[7] Marc Bron, Jasmijn Van Gorp, Frank Nack, Lotte Belice Baltussen, and Maarten
de Rijke. 2013. Aggregated search interface preferences in multi-session search
tasks. In Proc. 36th Int. ACM SIGIR Conf. Research and Development in Information
Retrieval. 123–132.

[8] Danqi Chen, Weizhu Chen, Haixun Wang, Zheng Chen, and Qiang Yang. 2012.
Beyond ten blue links: Enabling user click modeling in federated web search. In
Proc. 5th ACM Int. Conf. Web Search and Data Mining. 463–472.

[9] Ye Chen, Yiqun Liu, Ke Zhou, Meng Wang, Min Zhang, and Shaoping Ma. 2015.
Does vertical bring more satisfaction?: Predicting search satisfaction in a hetero-
geneous environment. In Proc. 24th ACM Int. Conf. Information and Knowledge
Management. 1581–1590.

[10] Aleksandr Chuklin, Anne Schuth, Katja Hofmann, Pavel Serdyukov, and Maarten
De Rijke. 2013. Evaluating aggregated search using interleaving. In Proc. 22nd
ACM Int. Conf. Information and Knowledge Management. 669–678.

[11] Fernando Diaz. 2009. Integration of news content into web results. In Proc. 2nd
ACM Int. Conf. Web Search and Data Mining. 182–191.

[12] Jun Feng, Heng Li, Minlie Huang, Shichen Liu, Wenwu Ou, Zhirong Wang, and
Xiaoyan Zhu. 2018. Learning to collaborate: Multi-scenario ranking via multi-
agent reinforcement learning. In Proc. 27th Int. Conf. World Wide Web. 1939–1948.

[13] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement
learning with double Q-Learning. In Proc. 30th AAAI Conf. Artificial Intelligence.
2094–2100.

[14] Matthew Hausknecht and Peter Stone. 2015. Deep recurrent Q-Learning for
partially observable MDPs. In Proc. 29th AAAI Conf. Artificial Intelligence, Fall
Symp. Series, Sequential Decision Making for Intelligent Agents. 29–37.

[15] Dzung Hong, Luo Si, Paul Bracke, Michael Witt, and Tim Juchcinski. 2010. A
joint probabilistic classification model for resource selection. In Proc. 33rd Int.
ACM SIGIR Conf. Research and Development in Information Retrieval. 98–105.

[16] Luo Jie, Sudarshan Lamkhede, Rochit Sapra, Evans Hsu, Helen Song, and Yi
Chang. 2013. A unified search federation system based on online user feedback.
In Proc. 19th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining.
1195–1203.

[17] Arlind Kopliku, Karen Pinel-Sauvagnat, and Mohand Boughanem. 2014. Ag-
gregated search: A new information retrieval paradigm. Comput. Surveys 46, 3
(2014), 41.

[18] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. In Proc. 30th Annu. Conf. Neural Information Processing
Systems. 3675–3683.

[19] Or Levi, Ido Guy, Fiana Raiber, and Oren Kurland. 2018. Selective cluster presen-
tation on the search results page. ACM Transactions on Information Systems 36, 3
(2018), 28.

[20] Zeyang Liu, Yiqun Liu, Ke Zhou, Min Zhang, and Shaoping Ma. 2015. Influence
of vertical result in web search examination. In Proc. 38th Int. ACM SIGIR Conf.
Research and Development in Information Retrieval. 193–202.

[21] Bo Long and Yi Chang. 2014. Relevance ranking for vertical search engines. Morgan
Kaufmann Publishers Inc.

[22] Ilya Markov, Eugene Kharitonov, Vadim Nikulin, Pavel Serdyukov, Maarten
De Rijke, and Fabio Crestani. 2014. Vertical-aware click model-based effectiveness
metrics. In Proc. 23rd ACM Int. Conf. Information and Knowledge Management.
1867–1870.

[23] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. In Proc. 27th Annu. Conf. Neural Information Processing
Systems, Deep Learning Workshop.

[24] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540

(2015), 529–533.
[25] Harrie Oosterhuis and Maarten de Rijke. 2018. Ranking for relevance and display

preferences in complex presentation layouts. In Proc. 41st Int. ACM SIGIR Conf.
Research and Development in Information Retrieval. 845–854.

[26] Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao, Asli Celikyilmaz, Sungjin Lee,
and Kam-Fai Wong. 2017. Composite Task-Completion Dialogue Policy Learning
via Hierarchical Deep Reinforcement Learning. In Proc. 22nd Conf. Empirical
Methods in Natural Language Processing. 2231–2240.

[27] Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Desmond Brand, and Tapas
Kanungo. 2011. Model characterization curves for federated search using click-
logs: predicting user engagement metrics for the span of feasible operating points.
In Proc. 20th Int. Conf. World Wide Web. 67–76.

[28] Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Qiang Wu, Ran Gilad-
Bachrach, and Tapas Kanungo. 2011. On composition of a federated web search
result page: Using online users to provide pairwise preference for heterogeneous
verticals. In Proc. 4th ACM Int. Conf. Web Search and Data Mining. 715–724.

[29] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. 2015. Universal value
function approximators. In Proc. 32nd Int. Conf. Machine Learning. 1312–1320.

[30] Luo Si and Jamie Callan. 2003. Relevant document distribution estimation method
for resource selection. In Proc. 26th Int. ACM SIGIR Conf. Research and Development
in Informaion Retrieval. 298–305.

[31] Shanu Sushmita, Hideo Joho, Mounia Lalmas, and Robert Villa. 2010. Factors
affecting click-through behavior in aggregated search interfaces. In Proc. 19th
ACM Int. Conf. Information and Knowledge Management. 519–528.

[32] Richard S Sutton and Andrew G Barto. 1998. Reinforcement learning: An intro-
duction. MIT press.

[33] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial Intelligence 112 (1999), 181–211.

[34] Ryuichi Takanobu, Tianyang Zhang, Jiexi Liu, and Minlie Huang. 2019. A Hi-
erarchical Framework for Relation Extraction with Reinforcement Learning. In
Proc. 33rd AAAI Conf. Artificial Intelligence.

[35] Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J Mankowitz, and Shie Mannor.
2017. A deep hierarchical approach to lifelong learning in Minecraft. In Proc. 31st
AAAI Conf. Artificial Intelligence. 1553–1561.

[36] Gilad Tsur, Yuval Pinter, Idan Szpektor, and David Carmel. 2016. Identifying web
queries with question intent. In Proc. 25th Int. Conf. World Wide Web. 783–793.

[37] Lauren Turpin, Diane Kelly, and Jaime Arguello. 2016. To blend or not to blend?:
Perceptual speed, visual memory and aggregated search. In Proc. 39th Int. ACM
SIGIR Conf. Research and Development in Information Retrieval. 1021–1024.

[38] Chao Wang, Yiqun Liu, Min Zhang, Shaoping Ma, Meihong Zheng, Jing Qian,
and Kuo Zhang. 2013. Incorporating vertical results into search click models. In
Proc. 36th Int. ACM SIGIR Conf. Research and Development in Information Retrieval.
503–512.

[39] Yue Wang, Dawei Yin, Luo Jie, Pengyuan Wang, Makoto Yamada, Yi Chang, and
Qiaozhu Mei. 2016. Beyond ranking: Optimizing whole-page presentation. In
Proc. 9th ACM Int. Conf. Web Search and Data Mining. 103–112.

[40] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot, and
Nando de Freitas. 2016. Dueling Network Architectures for Deep Reinforcement
Learning. In Proc. 33rd Int. Conf. Machine Learning. 1995–2003.

[41] Long Xia, Jun Xu, Yanyan Lan, Jiafeng Guo, Wei Zeng, and Xueqi Cheng. 2017.
Adapting Markov decision process for search result diversification. In Proc. 40th
Int. ACM SIGIR Conf. Research and Development in Information Retrieval. 535–544.

[42] Junqi Zhang, Yiqun Liu, Shaoping Ma, and Qi Tian. 2018. Relevance Estimation
with Multiple Information Sources on Search Engine Result Pages. In Proc. 27th
ACM Int. Conf. Information and Knowledge Management. 627–636.

[43] Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M Jose. 2012. Evalu-
ating aggregated search pages. In Proc. 35th Int. ACM SIGIR Conf. Research and
Development in Information Retrieval. 115–124.

[44] Ke Zhou, Ronan Cummins, Mounia Lalmas, and Joemon M Jose. 2013. Which
vertical search engines are relevant?. In Proc. 22nd Int. Conf. World Wide Web.
1557–1568.

[45] Tao Zhuang, Wenwu Ou, and Zhirong Wang. 2018. Globally Optimized Mutual
Influence Aware Ranking in E-Commerce Search. In Proc. 27th Int. Joint Conf.
Artificial Intelligence. 3725–3731.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Reinforcement Learning
	2.2 Options Framework

	3 Related Work
	3.1 Vertical Selection
	3.2 Vertical Presentation

	4 Hierarchical Search Aggregation
	4.1 Source Selection with High-level Policy
	4.2 Item Presentation with Low-level Policy
	4.3 Q Network Framework
	4.4 Hierarchical Policy Learning

	5 Experimental Setup
	5.1 Features and Parameter Settings
	5.2 Baselines and Evaluation Metrics

	6 Results
	6.1 Online Performance
	6.2 User Evaluation
	6.3 Training Analysis

	7 Conclusion and Discussion
	References

