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Deep Conversational Recommender in Travel
Lizi Liao, Ryuichi Takanobu, Yunshan Ma, Xun Yang, Minlie Huang and Tat-Seng Chua

Abstract—When traveling to a foreign country, we are often in dire need of an intelligent conversational agent to provide instant and
informative responses to our various queries. However, to build such a travel agent is non-trivial. First of all, travel naturally involves
several sub-tasks such as hotel reservation, restaurant recommendation and taxi booking etc, which invokes the need for global topic
control. Secondly, the agent should consider various constraints like price or distance given by the user to recommend an appropriate
venue. In this paper, we present a Deep Conversational Recommender (DCR) and apply to travel. It augments the sequence-to-
sequence (seq2seq) models with a neural latent topic component to better guide response generation and make the training easier.
To consider the various constraints for venue recommendation, we leverage a graph convolutional network (GCN) based approach
to capture the relationships between different venues and the match between venue and dialog context. For response generation,
we combine the topic-based component with the idea of pointer networks, which allows us to effectively incorporate recommendation
results. We perform extensive evaluation on a multi-turn task-oriented dialog dataset in travel domain and the results show that our
method achieves superior performance as compared to a wide range of baselines.

Index Terms—Conversational recommender, Dialog system, Travel Domain.
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1 INTRODUCTION

Conversational agents and travel go hand in hand. In
fact, artificial intelligence is set to be a game-changer for
this industry, through helping travellers and companies
simplifying travel arrangements and streamlining business
procedures. Currently, large companies in travel industry
such as Expedia.com, KLM and Booking.com, race to launch
their online chatbots. For example, in the first month after
KLM lauching their bot service, their volume of Facebook
messages jumped 40 percent. It is a fact that conversational
agents are revolutionizing customer care, from answering
questions to solving customer issues to venue recommenda-
tions etc.

Although conversational agents in travel show big com-
mercial potential, it is non-trivial to build such an intelligent
system to meet the various user needs. As the example
illustrated in Figure 1, travel naturally involves several
sub-tasks such as hotel reservation, restaurant booking and
attraction recommendation etc. Thus the agent should have
the ability to recognize those topics from the context and
generate within-topic responses. Currently, neural conversa-
tional models [1], [2], [3] are the latest development in con-
versational modeling, where seq2seq-based models, such
as HRED [3], are employed for generating responses in an
end-to-end fashion. Such models are good at capturing the
local structure of word sequence but might face difficulty in
remembering global semantic structure of dialog sessions.
Therefore, current state-of-the-art methods might not be
sufficient for the travel agent scenario.

At the same time, to satisfy users’ need such as finding
hotel or restaurant, the ability to recognize constraints and
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Hi, I'm looking for a train that is going to cambridge and arriving there 
by 20:45, is there anything like that?
There are over 1,000 trains like that.  Where will you be departing from?
I am departing from birmingham new street.
Can you confirm your desired travel day?
I would like to leave on Wednesday.
TR3211 is leaving birmingham new street at 17:40 and arriving at 20:23 
on Wednesday.  Will this work for you?
That will, yes. Please make a booking for 5 people please.
I've booked your train tickets, and your reference number is A9NHSO9Y.
Thanks so much. I would also need a place to stay. I am looking for 
something with 4 stars and has free wifi.
How about the cambridge belfry?  It has all the attributes you requested 
and a great name!  Maybe even a real belfry?
That sounds great, could you make a booking for me please?
What day would you like your booking for?
Please book it for Wednesday for 5 people and 5 nights, please.
Booking was successful. Reference number is : 5NAWGJDC.
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Fig. 1: A sample dialog between a user (U) and an agent
(A) from the dataset. We observe the need for global topic
control and appropriate venue recommendation.

efficiently leverage them in venue recommendation is essen-
tial for building an intelligent system. For example, in order
to generate the hotel ‘cambridge belfry’ as in Figure 1, the
agent needs to capture not only the constraints like ‘4 stars’
and ‘free wifi’ under the same topic, but also the hidden
location constraint ‘cambridge’. Moreover, we observe that
distance and time are also important factors to consider
when doing venue recommendation under the travel sce-
nario. Indeed, there have been some existing efforts aiming
to find appropriate venues in conversational systems. Many
task-oriented dialog systems try to form queries and feed
them to database systems to retrieve venues [4], [5], [6].
However, such methods heavily rely on the exact match of



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, JUNE 2019 2

constraints which is rather sensitive to even slight language
variations. It also has other limitations such as the weakness
on modeling relationships between venues and the inability
to back-propagate error signals from the end output to the
raw inputs. To alleviate such problems, memory networks
are leveraged to ‘softly’ incorporate venue entries in exter-
nal Knowledge Bases (KBs) [7], [8]. However, the various
relationships between venues, even the simplest ‘nearby’
relation, are hard to model. The most recent studies such as
[9], [10] integrate conversational system with recommenda-
tion components, but the recommendation part only focus
on learning the interplay between users and items.

In this paper, we propose a Deep Conversational Rec-
ommender (DCR) as shown in Figure 2 and apply it to the
travel domain to address the above mentioned problems.
First, in order to enable the agent to swiftly differentiate sub-
topics in travel, we leverage the underlying seq2seq-based
model to capture the local dynamics of utterances while
extract and represent its global semantics by a mixture of
topic components like topic models [11]. Second, we employ
a graph convolutional network (GCN) based approach to
capture the various relationships between venues and learn
the match between venue and dialog context. When generat-
ing venue recommendations, the agent ranks the venues by
calculating the matching scores between the learned venue
representations and dialog context representations. The key
idea is that GCN-based component helps the conversational
recommender to generate better representations of venues
that incorporate both venue feature information as well as
venue relations. Third, we combine the topic-based compo-
nent and the GCN-based component by leveraging the idea
of pointer networks. It allows us to effectively incorporate
the recommendation results into the response generation
procedure.

To sum up, the main contributions of this work are
threefold as follows:

• We propose a conversational travel agent which
handles multiple sub-tasks involving seven topics
— attraction, hospital, police, hotel, restaurant, taxi
and train. A neural topic component helps it to
generate within-topic responses by narrowing down
the generation of tokens in decoding.

• We employ a GCN-based venue recommender which
jointly captures venue information, relationships be-
tween them and the dialog contexts. Inspired by
pointer networks, an integration mechanism is used
to incorporate the recommendation results to the
final responses.

• We conduct extensive experiments to evaluate the
proposed method under various evaluation metrics
and show superior performance over the state-of-
the-art methods.

In the rest of the paper, we review related work in
Section 2. Section 3 describes the elementary building blocks
of the proposed learning method, including the neural la-
tent topic component, graph convolutional network based
recommender and the response integration mechanism in-
spired by pointer network. Experimental results and anal-
ysis are reported in Section 4, followed by conclusions and
discussion of future work in Section 5.

2 RELATED WORK

2.1 Task Oriented Conversational Systems
Task-oriented systems aim to assist users to achieve specific
goals with natural language such as restaurant reservation
and schedule arrangement. Traditionally, they have been
built in pipelined fashion: language understanding, dialog
management, knowledge query and response generation
[12], [13], [14]. However, the requirement of human labor
in designing dialog ontology and heavy reliance on slot
filling as well as dialog state tracking techniques limits its
usage to relatively simple and specific tasks such as flight
reservation [15] or querying bus information [16]. For travel
which involves multiple sub-tasks and needs to handle vari-
ous constraints for venues recommendation, such pipelined
methods might not be sufficient.

Recently, end-to-end approaches for dialog modeling,
which use seq2seq-based models, have shown promising
results [3], [5], [17]. They directly map plain text dialog
history to the output responses. Since the dialog states are
latent, there is no need for hand-crafted state labels. In order
to make such models generate within-topic responses, a
possible way is to provide relevant database query results
as a proxy for language grounding. As shown in [18], a
stochastic neural dialog model can generate diverse yet
rational responses mainly because they are heavily driven
by the knowledge the model is conditioned on. However,
despite the need for explicit knowledge representations,
building a corresponding knowledge base and actually
making use of it have been proven difficult [19], [20]. There-
fore, progress has been made in conditioning the seq2seq
model on coarse-grained knowledge representations, such
as a fuzzily-matched retrieval result via attention [21] or a
set of pre-organized topic or scenario labels [22], [23]. In our
work, we opt for a new direction to employ a hybrid of
a seq2seq conversational model and a neural topic model
to jointly learn the useful latent representations. Based on
the learned topics, the system manages to narrow down the
response generation.

2.2 Conversational Recommender
By offering a natural way for product or service seeking,
conversational recommendation systems are attracting in-
creasing attention. Due to the big commercial potential,
companies like Amazon, Google, eBay, Alibaba are all
rolling out such kind of conversational recommenders. In-
tuitively, integrating recommendation techniques into con-
versational systems can benefit both recommender and con-
versational systems, especially for travel. For conversational
systems, good venue recommendations based on users’
utterances, venue information and relations can better fulfill
user’s information need thus creating more business oppor-
tunities. For recommender systems, conversational systems
can provide more information about user intentions, such
as user preferred type of food or the location of a hotel, by
interactively soliciting and identifying user intentions based
on multi-round natural language conversation.

Although conversational recommendation has shown
great potential, research in this area is still at its infancy.
Existing approaches usually are goal-oriented and combine
various modules each designed and trained independently
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Fig. 2: The proposed DCR model for travel, which consists of three components. The global topic control component
enables the system to switch between various sub-tasks quickly. The GCN-based venue recommendation component
generates venues by considering venue information, relations among them and the match to dialog context. Finally, a
pointed integration mechanism incorporates the two components for the final response generation. The diamonds are
stochastic nodes.

[24], [25]. These approaches either rely heavily on tracking
the dialog state which consists of slot-value pairs, or focus
on different objectives such as minimizing the number of
user queries to obtain good recommendation results. For
example, [9] employed user-based autoencoder for collab-
orative filtering and pre-trained it with MovieLens data to
do recommendation. However, their recommendations are
only conditioned on the movies mentioned in the same
dialog, while ignores other dialog contents expressed in
natural language. As another example, [26] leveraged a
generative Gaussian model to recommend items to users
in a conversation. However, their dialog system only asks
questions about whether a user likes an item or whether
the user prefers an item to another, while a typical task
oriented dialog system often directly solicits facets from
users [5], [27]. There are also another line of approaches
using reinforcement learning (RL) to train goal-oriented
dialog systems [10], [28]. For instance, in [10], a simulated
user is used to help train a dialog agent to extract the facet
values needed to make an appropriate recommendation.
In contrast, we propose to employ a GCN-based venue
recommender to take care of various constraints for venues
which are prevalent in travel and seamlessly integrate these
results to the response generation.

3 THE DCR MODEL

We aim at building an agent capable of answering users’
queries and making venue recommendations to satisfy their
requirements. One might therefore characterize our system
as a conversational recommender. The complete architecture
of our approach is illustrated in Figure 2. Starting from the
bottom of Figure 2, there are mainly three sub-components
as follows.

(1) In order to help the system generate within-topic
response ym, a global topic control component takes in
dialog context {u1, · · · , um−1} with m − 1 utterances and
produces probability distribution p(ymt) over each token
ymt that favor certain topics,

p(ymt) = fTopic({u1, · · · , um−1}|Ψ),

where fTopic denotes the global topic control model net-
work and Ψ denotes the network parameters.

(2) A graph convolutional neural network based v-
enue recommendation component learns venue represen-
tation R by capturing various venue information and re-
lationships. It learns the matching between dialog contexts
{u1, · · · , um−1} and the representations R to generate rec-
ommendation scores p for venues.

p = softmax(RTh),

where h is the hidden representation of dialog context.
(3) The recommender’s output p is used in response

generation together with the topic part output p(ymt) via
a pointed integration mechanism. The hard gate sentinel
$ is leveraged for choosing them. After formalizing the
problem as above, we provide more details for each of these
components one by one.

3.1 Global Topic Control

3.1.1 Basic Encoder
Formally, we consider a dialog as a sequence of M ut-
terances D = {u1, · · · , uM}. Each utterance um is a se-
quence with Nm tokens, i.e. um = {ym,1, · · · , ym,Nm}.
The ym,n are either tokens from a vocabulary V or venue
names from a set of venues V ′. In general, seq2seq-based
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conversational models like [3] generate a target utterance
given a source utterance and dialog history. Given the
dialog context {u1, · · · , um−1}, the goal is to produce a
machine response um that maximizes the conditional proba-
bility u∗m = argmax

um
p(um|um−1, · · · , u1). Here, we apply

the well-accepted hierarchical recurrent encoder decoder
(HRED) model [3] as the backbone network. At the token
level, an encoder RNN maps each utterance um to an
utterance vector representation um, which is the hidden
state obtained after the last token of the utterance has been
processed. At the utterance level, a context RNN keeps track
of past utterances by iteratively processing each utterance
vector and generates the hidden state hm,

p(um|um−1, · · · ,u1) , p(um|hm) (1)
hm = fWU

(hm−1,um−1). (2)

At the token level, when the decoder of the HRED mod-
el generates tokens in machine response um, we initialize
hm,0 = hm−1.

p(ym,t|ym,1:t−1,hm−1) , p(ym,t|hm,t) (3)

hm,t = fWH
(hm,t−1, ym,t−1) (4)

where hm,t is the token level hidden state at step t inside
turn m, fWU

and fWH
are the hidden state updates that can

either be a vanilla RNN cell or complex cell such as LSTM
or GRU.

3.1.2 Generative Process
While RNN-based models can theoretically model arbitrar-
ily long dialog histories if provided enough capacity, in
practice even the improved version like LSTM or GRU
struggles to do so [29], [30]. In dialogs between user and
travel agent, there usually exist long-range dependencies
captured by sub-topics such as hotel reservation, restaurant
finding and train ticket booking etc. Since much of the
long-range dependency in language comes from semantic
coherence [30], not from syntactic structure which is more
of a local phenomenon, the inability to memorize long-term
dependencies prevents RNN-based models from generating
within-topic responses. On the other hand, topic models are
a family of models that can be used to capture global seman-
tic coherency [11]. It relies on counting word co-occurrence
to group words into groups. Therefore, we leverage a neural
topic component to extract and map between the input and
output global semantics so that the seq2seq submodule can
focus on perfecting local dynamics of the utterances such as
the syntax and word order.

The generative process of the global topic control com-
ponent can be described as the following,

1. Encode the user input um−1 and dialog con-
text C into a vector representation hm−1 =
HRED(um−1, · · · , u1) ∈ Rd.

2. Draw a topic proportion vector θ ∼ N(0, I).
3. In turn m, initialize the decoder hidden state hm,0 =

hm−1.
4. Given token ym,1:t−1, for the t-th token ym,t,

(a) Update the hidden state hm,t =
fWH

(hm,t−1, ym,t−1).

(b) Draw stop word indicator lt ∼
Bernoulli(sigmoid(WThm,t)).

(c) Draw a token ym,t ∼ p(ym,t|hm,t,θ, lt,B),
where
p(ym,t = i|hm,t,θ, lt,B) ∝ exp(wT

i hm,t+(1−
lt)bTi θ).

The HRED(·) is the HRED model [3] which en-
codes dialog history into a vector representation, and
N(µ(hm−1), σ2(hm−1)) is a parametric isotropic Gaussian
with a mean and variance both obtained from Multilayer
Perceptron with input hm−1 separately. The wi and bi are
the corresponding columns in weight matrix W and B. To
combine with the seq2seq-based model, we adopt the hard-
decision style from TopicRNN [30] by introducing a random
variable lt. The stop word indicator lt controls how the topic
vector θ affects the output. Note that the topic vector is used
as a bias which enables us to have a clear separation of
global semantics and those of local dynamics. For example,
when lt = 1 which indicates that ym,t is a stop word, the
topic vector θ will have no contribution to the output. This
design is especially useful as topic models do not model
stop words well, because stop words usually do not carry
semantic meaning while appear frequently in almost every
dialog session.

3.1.3 Inference

During model inference, the observations are token se-
quences um and stop word indicators l1:Nm

. The log
marginal likelihood of um is

log p(um, l1:Nm
|u1:m−1) =

log

∫
θ
p(θ|u1:m−1)

Nm∏
t=1

p(ym,t|hm,t, lt,θ)p(lt|hm,t)dθ.
(5)

Since direct optimization of Equation 5 is intractable due to
the integral over the continuous latent space, we use varia-
tional inference for approximating it [31]. Suppose q(θ|u1:m)
be the variational distribution on the marginalized variable
θ, the variational lower bound of Equation 5 can therefore
be constructed as

L(um, l1:Nm
|q(θ|u1:m),Ψ)

, Eq(θ|u1:m)

[ Nm∑
t=1

logp(ym,t|hm,t, lt,θ)

+
Nm∑
t=1

logp(lt|hm,t)
]
−DKL(q(θ|u1:m)||p(θ|u1:m−1))

≤ log p(um, l1:Nm
|u1:m−1,Ψ).

(6)

Inspired by the neural variational inference framework in
[32], [33] and the Gaussian reparameterization trick in [34],
we construct q(θ|u1:m) as an inference network using a
feed-forward neural network,

q(θ|u1:m) = N(θ;µ(u1:m), diag(σ2(u1:m))). (7)

Denoting τ ∈ N |V/Vs|
+ as the term-frequency vector of u1:m

excluding stop words (with Vs as the stop word vocabu-
lary), we have µ(u1:m) = ReLU(WT

µτ ) and σ(u1:m) =

ReLU(WT
σ τ ) where bias is omitted. Note that although
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q(θ|u1:m) and p(θ|u1:m−1) are both parameterized as Gaus-
sian distributions, the former one only works during train-
ing while the later one generates the required topic distribu-
tion vector θ for composing the machine response.

Suppose during training, the one-hot vector for any
token y and its stop word indicator are y and l respec-
tively. The predicted correspondence vectors are y′ and l′.
Inspired by Equation 6, the loss for this global topic control
component consists of two cross entropy losses and a KL
divergence between the assumed distribution and learned
distribution as follows.

LTopic = avg.
[
Lcross(y, y′) + Lcross(l, l′)

]
−DKL(N(0, I)||q(θ|u1:m)),

(8)

where avg. indicates the averaged cross entropy loss over
all training tokens.

3.2 GCN-based Venue Recommendation

Given the dialog context and ground truth venue node
pairs, our task in this subsection is to find a good match be-
tween them. We need to leverage both the venue attributes
such as ‘free wifi’ for hotel and the various relationships be-
tween these venues. For example, when user books a hotel,
he or she might also want to find a ‘nearby’ restaurant. To
jointly consider such attributes as well as the relationships,
we naturally resort to graph based methods. Recently, the
graph convolutional neural network (GCN) based methods
have set a new standard on countless recommender system
benchmarks [35], [36]. Unlike purely content-based deep
models (e.g., recurrent neural networks), GCNs leverage
both content information as well as graph structure. We
thus adopt the graph convolution operation into our venue
recommender.

We formulate an un-directed graph structure as G =
(O,E), where O = {n1, n2, · · · , nN} is a set of N nodes
and E ⊆ N × N is a set of edges between nodes. Here
the nodes can be hotels, restaurants, location area etc, while
the relations can be ‘nearby’ or co-appear etc. In this way,
venues located in the same area will be connected closely,
and venues co-appeared in the same dialog session will
be connected closely. We use A ∈ RN×N to denote the
adjacency matrix, Ã = A + I to denote the adjacency matrix
with added self-connections and the new degree matrix
D̃ii =

∑
j Ãij . We denote the attributes of nodes as a

matrix X, the representations of nodes in lth layer as R(l).
Initially, we have R(0) = X which means that the initial
representation of nodes are obtained from embedding node
attributes.

Given such a constructed graph, we generate high-
quality embeddings or representations of entities that can
be used for calculating the matching score with dialog
context thus obtaining the venue recommendation results.
Generally speaking, to generate the embedding for a venue,
we apply multiple convolutional modules that aggregate
feature information from the venue’s local graph neighbor-
hood. The core idea is to learn how to iteratively aggregate
feature information from local graph neighborhoods. As
shown in Figure 3, we first project the former layer node
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Fig. 3: The illustration of convolution operation in the con-
structed graph. Two layers are stacked. Each r(l) denotes a
node representation, corresponds to the column in Rl.

representation R(l−1) into a latent space using the weight
matrix W(l) (we omitted the bias term for simplicity),

R′ = R(l−1)W(l).

Then the latent representation R′ is propagated via the nor-

malized adjacency matrix D̃
− 1

2 ÃD̃
− 1

2 with self-connections.
As demonstrated in [37], this propagation rule is motivated
via a first-order approximation of localized spectral filters
on graphs. Finally, we use the ReLU function to increase the
non-linearity. Thus, a single “convolution” operation trans-
forms and aggregates feature information from a node’s
one-hop graph neighborhood as follows,

Rl = ReLU(D̃
− 1

2 ÃD̃
− 1

2 R(l−1)W(l)). (9)

By stacking multiple such convolutions, information can be
propagated across far reaches of a graph. Here we stack two
layers.

After introducing the updating rules for node represen-
tations as in Equation 9, we present the objective function
which encourages the matching between dialog context and
venues. Suppose there are M dialog context and ground
truth node pairs, we obtain the dialog context representation
hi and the ground truth node vector si ∈ RN for each
pair. The objective function resumes the cross-entropy loss
as follows

LGCN = − 1

M

M∑
i=1

[silog(pi) + (1− si)log(1− pi)], (10)

where pi = softmax(RThi) is a vector of scores predicted
by the GCN-based model, and R is the finial node represen-
tation matrix obtained via the graph convolution process.

3.3 Pointed Integration Mechanism

Now, given the dialog context, we can predict the next
utterance via the global topic control component and obtain
the recommended venue through the GCN-based recom-
mender. To integrate the two lines of results, we propose
a pointed integration mechanism. Generally speaking, we
use a Gated Recurrent Unit (GRU) [38] to decode the system
response. At each decoding step t in turn m, the GRU gets
the previously generated token and the previous hidden
state as input, and generates the new hidden state,

hm,t = GRU(hm,t−1, ŷm,t−1).
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Then the hidden state hm,t is passed to two branches as
shown in Figure 2. In one branch, the hm,t is passed to the
global topic control component. Following the generative
process introduced in Subsection 3.1.2, the probability of
generating the next token is calculated as:

p1(ŷm,t) ∝ exp(WThm,t + (1− lt)BTθ). (11)

In the other branch, the hm,t is fed to the GCN-based
recommender. It helps the recommender rank the venues
and output the top ranked venue name.

p2(ŷm,t) = softmax(RThm,t). (12)

3.3.1 Sentinel
In the final response generation, whether a token is gen-
erated from Equation 11 or Equation 12 is decided via a
sentinel. As detailed before, we have a set of venue names
V ′. At the very beginning, we substitute all the venue names
in dataset with the sentinel token $. Thus the vocabulary for
topic control component is V which consists of all the tokens
appearing in our dataset (expect the venue names) plus the
$ token. During the response decoding process, once the
sentinel is chosen, the model will generate the token from
the GCN-based recommender, which means the model will
produce the top-ranked venue name as the generated token.
Otherwise, the model chooses a token in V as the decoded
token. Basically, the sentinel token is used as a hard gate to
control where the next token is generated from at each time
step. In this way, we do not need to separately learn a gating
function as in [39]. Also, our model is not constrained by a
soft gate mechanism as in [40].

3.4 Training Objectives
As the generation of responses is controlled via the sentinel
token $ as a hard gate, the generation procedure actually
works in a two-step way. The substitution of $ with venue
recommendation result is separate from the token genera-
tion process. In order to achieve good results, we train the
whole model in a sequential way. At the beginning, we train
the global topic control component separately on the altered
dataset where all venue names are substitute with $. The
training objective of this component is LTopic detailed as
Equation 8.

Then we change back the dataset and train the GCN
component for venue ranking on it. The dialog context is
embedded via the trained global topic control model. The
training objective is λLGCN as detailed in Equation 10.

Finally, we initialize the whole model with the com-
ponents trained and fine-tune them altogether. The final
training objective is as follows,

L = LTopic + λLGCN ,

where λ is the weight to balance the losses of the two
components. In our experiments, we empirically set this
hyperparameter to 0.1.

4 EXPERIMENTS

In this section, we systematically evaluate the proposed
method, termed as DCR, in travel. The experiments are
carried out to answer the research questions as follows.

RQ1: Can the proposed DCR properly respond to users’
queries in travel? What are the key reasons behind?

RQ2: Does the topic control component help the system
generate coherent responses? Are the learnt topics
reasonable?

RQ3: Does the GCN-based recommender help the system
find appropriate venues? Whether the relationships
between venues are important to capture?

In what follows, we will first describe the experimental
settings. We then answer the above three research questions.

4.1 Experimental Setup
4.1.1 Dataset
Arguably the greatest bottleneck for statistical approaches to
dialog system development is the collection of appropriate
training dataset, and this is especially true for task-oriented
dialog systems [41]. Fortunately, [6] contributed a dataset
consisting of over 10K conversation sessions in travel do-
main — MultiWOZ, which is a fully-labeled collection of
human-human written conversations. During the collection
of this dataset, it simulates natural conversations between a
tourist and a clerk from an information center in a touris-
tic city. Various possible dialog scenarios are considered,
ranging from requesting basic information about attractions
through booking a hotel room or traveling between cities.
In total, the presented corpus consists of 7 sub-topics —
Attraction, Hospital, Police, Hotel, Restaurant, Taxi, Train.
The dialogs cover between 1 and 5 sub-topics per dialog
thus greatly varying in length and complexity. This broad
range of topics captures the common scenarios where sub-
tasks are naturally connected in travel. For example, a
tourist needs to find a hotel, to get the list of attractions
and to book a taxi to travel between both places.

In total, there are 10, 438 dialogs collected, where 3, 406
of them focus in single-topic dialogs and 7,032 of them are
dialogs consisting of at least 2 up to 5 sub-topics. In the ex-
periment, we follow random split of train, test and develop-
ment set in the original paper. The test and development sets
contain 1k examples each. Generally, around 70% of dialogs
have more than 10 turns which shows the complexity of
the corpus. The average number of turns are 8.93 and 15.39
for single and multi-domain dialogs respectively with 115,
434 turns in total. The average sentence lengths are 11.75
and 15.12 for users and system response respectively. The
responses are also more diverse thus enabling the training
of more complex generation models.

4.1.2 Comparing Methods
To evaluate the effectiveness of the proposed method, we
compare it with the following state-of-the-art solutions.

– HRED [3]: It predicts the system utterance given
the history utterances. The history is modeled with
two RNNs in two levels: a sequence of tokens for
each utterance and a sequence of utterances. This
model works as the basis for our method and other
baselines.

– MultiWOZ [6]: It frames the dialog as a context to
response mapping problem, a seq2seq model is aug-
mented with an oracle belief tracker and a discrete
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database accessing component as additional features
to inform the word decisions in the decoder. Note
that a seq2seq model is used in the original paper,
we extend it to HRED to model multi-turn dialogs.

– Mem2Seq [8]: It augments the existing MemNN [7]
framework with a sequential generative architecture
to produce coherent responses for task-oriented dia-
log systems. It uses global multi-hop attention mech-
anisms to copy words directly from dialog history or
KBs.

– TopicRNN [30]: It incorporates topic information
into the seq2seq framework to generate informative
and interesting responses for chatbots. We also ex-
tend the encoder part to model multi-turn dialogs.

– ReDial [9]: It integrates the HRED based conversa-
tional model with a denoising auto-encoder based
recommender [42] via a switching mechanism. The
recommendation part is pre-trained separately and
only considers the co-occurrence of items while ig-
nores the dialog context. The recommender part is
also compared in ablation study.

– NCF [43]: It employs deep learning to model the
key factor in collaborative filtering — the interaction
between user and item features, and achieves good
performance. The inner product is replaced with a
neural architecture. We compare this recommender
with our GCN-based recommender in the ablation
study.

4.1.3 Evaluation Protocols
We evaluate the methods in various evaluation protocols.
Due to the difficulty in evaluating conversational agents
[44], a human evaluation is usually necessary to assess
the performance of the models. Therefore, we perform
both corpus-based evaluations and human evaluations. For
corpus-based evaluations, we adopt the BLEU score and
Entity Accuracy as our evaluation metrics, where:

– BLEU: Being commonly used in machine translation
evaluations, BLEU score has also been widely used
in evaluating dialogs systems [45]. It is based on the
idea of modified n-gram precision, where the higher
score denotes better performance.

– Entity Accuracy: Similar to [8], we average over
the entire set of system responses and compare the
entities in plain text. The entities in each gold system
response are selected by a predefined entity list. This
metric evaluates the ability to recommend appropri-
ate items from the provided item set and to capture
the semantics of dialogs [45].

For human evaluations, we define a set of subjective
scores to evaluate the performance of various methods.
We run a user study to assess the overall quality of the
responses of our model as compared to the baselines. To
do a less biased evaluation, we recruit five participants and
present each of them ten generated dialog sessions from
our test set. The participants are asked to give Fluency
scores and Informativeness scores for the generated system
responses. They are also asked to provide the rankings of
each method for each dialog session. We allow ties so that
multiple methods could be given the same rank for the same

dialog session (e.g., rankings of the form 1, 2, 2, 2, 2 are
possible if the one method is clearly the best, but the other
four are of equivalent quality).

– Fluency: It evaluates how fluent the generated re-
sponses are. The score ranges from zero to five,
where a larger score indicates the generated response
is more fluent.

– Informativeness: This score shows whether the gen-
erated responses are informative or not, or say
whether users’ queries get properly answered. It
also ranges from zero to five, where a larger score
indicates that the evaluator thinks that the generated
response is more informative.

– Ranking: This metric directly shows how good each
method is as compared to the others. It reflects the
overall feeling of users regarding the performance of
each method.

4.1.4 Training Setups
The proposed model is implemented in PyTorch 1. We use
the provided development set to tune the hyper-parameters,
track the training progress and select the best performing
model for reporting the results on the test sets. The compo-
nents of the joint architecture are first trained separately to
achieve a relatively good performance. We then combine
them together and fine-tune by minimizing the sum of
various loss functions as detailed in Section 3.4. We use an
embedding size of 300, GRU state size of 100. The embed-
dings are initialized from pretrained GloVe embeddings [46]
and fine-tuned during training. We use two layers of graph
convolutional operations. Mini-batch SGD with a batch size
of 64 and Adam optimizer [47] with a learning rate of 0.01
is used for training.

We use the Python-based natural language toolkit NLTK
to perform tokenization. Entities in dialog sessions are
recognized via heuristic rules plus database entries. All
counts, time and reference numbers are replaced with the
〈value count〉, 〈value time〉 and 〈domain reference〉 tokens
respectively. To reduce data sparsity further, all tokens are
transformed to lowercase letters. The stop words are chosen
using tf–idf [48]. The number of topics K is set to 20. All to-
kens that appear less than 5 times in the corpus are replaced
with the 〈UNK〉 token. We follow the {S,U,S’} utterance
“triples” structure as [3] in our experiments, which means
we aim to generate the system utterance S’ by observing the
former 1 turn of system utterance S and user utterance U.

4.2 Performance Comparison
4.2.1 Corpus-based Evaluation
The result of the corpus-based evaluation is presented in
Figure 4 and Figure 5. For each method, the results are ob-
tained based on the best model chosen via the development
set. The key observations are as follows.

Overall, the proposed DCR method performs better than
all the other baselines in both metrics – BLEU and entity
accuracy. For example, regarding BLEU score, we observe
a 6.82% of performance improvement as compared to the
second best method, TopicRNN. The two methods perform

1. Our code will be made publicly available for reproducibility.
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better than all the other baselines. In terms of the entity
accuracy score, DCR improves the performance of venue
recommendation by 17.2% as compared to the second best
method, Mem2Seq. The performance improvements of DCR
method demonstrate its effectiveness in travel domain con-
versational recommendation due to the following aspects: a)
DCR has a global topic control component which enables the
system to adaptively generate within topic responses based
on the context topic. The learned topics narrow down the
generation of tokens in decoding. b) The graph convolution
operation incorporates venue information as well as venue
relations in the learned venue representations. It matches
the venues with the dialog contexts which is essential for
conversational recommendation.

0
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0.15

0.2

0.25

0.3

BLEU(sentence level)

Fig. 4: The BLEU scores for each method.

In more detail, we analyse the BLEU score shown in
Figure 4 first. It reflects the quality of generated text re-
sponses. Generally speaking, all methods manage to achieve
some improvements over the basic framework – HRED.
For the MultiWoz method, the performance improvement
is due to the incorporation of a belief tracker and a discrete
database accessing component. However, the improvement
is less than that of the Mem2Seq method, because MultiWoz
encodes the belief states into anonymous vectors and only
the database search count is leveraged. Mem2Seq, on the
contrary, generates responses from the dialog history and
KB — some tokens or entities are directly copied to form
responses. It happens frequently that words appeared in
dialog context are re–used by later responses, which is the
underlying reason for its good performance. For the method
ReDial, since a pointer softmax is leveraged to integrate the
text modeling and the recommendation part, its BLEU score
might get affected. When it comes to TopicRNN, we observe
a performance improvement, which is mainly attributed to
the topic mechanism. It helps to generate tokens matching
the dialog context topic and narrow down the generation
of tokens. In addition to a similar topic control scheme, D-
CR manages to achieve superior performance by achieving
better entity prediction.

Regarding the entity accuracy score presented in Figure
5, we observe that the basic end-to-end framework method,
HRED, performs rather badly. It is as expected since the
method only treat venue entities as tokens and generate
tokens based on the encoded dialog context. The basic infor-
mation of venue entities and the relationships between them
are ignored. For the MultiWoz method, although a database
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Fig. 5: The entity accuracy scores for each method. Note
that this is the top-1 accuracy score since only the top
ranked venue is leveraged by text response.

query component is leveraged, it only makes use of the
number of obtained results. Therefore, the performance is
still relatively low. When it comes to the Mem2Seq method,
there is a large performance leap. By observing the corpus,
we find that the reason might be due to frequent entity
re-use phenomenon in dialogs as we detailed before —
venue entities appeared in dialog context will likely to re-
appear in the following responses. For the ReDial method,
it manages to achieve better performance than that of its
basic framework HRED but the improvement is limited. Al-
though it has a denoising autoencoder based recommender,
it is largely affected by the data sparsity problem in the
dataset, and the recommendations are only conditioned on
the entities mentioned in the context but not directly on
the language, e.g. texts like “a cheap restaurant” in dialog
context are ignored. For the TopicRNN method, we also
observe a rather low performance on entity prediction. The
reason behind is similar to that of the HRED method. On
the contrary, the proposed DCR method is able to achieve
superior performance on finding the appropriate venue en-
tities. This is because the GCN-based recommender jointly
considers the venue information, venue relationships and
their match to the dialog context.

4.2.2 Human Evaluation

We present the averaged human evaluation results in Table
1 (the Fleiss’ kappa value between evaluators is 0.65). It
directly reflects human perception of the quality of gener-
ated responses. The results show that the proposed DCR
achieves the best performance across these various metrics,
which indicates that the responses generated by it are more
fluent and informative. We show that the performance im-
provements of DCR over the other methods are significant.
For example, in terms of the Fluency score, DCR improves
the performance of response generation by 50.0%, 44.5%,
30.3%, 53.5% and 8.8% as compared to the HRED, Mul-
tiWoz, Mem2Seq, Redial and TopicRNN methods, respec-
tively. Intuitively, at a certain degree, the BLEU score also
reflects how fluent the responses are. In the results, these
two metrics indeed show similar pattern of performance
improvements. As detailed before, the main reason for the
superior performance of DCR might be due to the global
topic control mechanism. In travel, dialogs naturally involve
multiple sub-tasks, which leads to several topics in the
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dialog flow. The topic control component enables the system
to swiftly switch among topics and generate within-topic
responses.

TABLE 1: Human evaluation results for different methods.

Method Fluency Informativeness Ranking

HRED 2.64 2.34 3.08
MultiWOZ 2.74 2.82 2.7
Mem2Seq 3.04 3.06 2.3
ReDial 2.58 2.62 2.8
TopicRNN 3.64 2.78 2.66
DCR 3.96 3.82 1.8

At the same time, the Informativeness score shows
whether user queries are properly addressed. It not only
includes the evaluation of recommended venues but also the
information slots appeared in responses such as food type,
hotel price etc. We observe that the general performance pat-
tern resembles that of the entity accuracy metric. However,
the Informativeness score of DCR is much larger than that
of Mem2Seq. This might be due to the fact that although
the venue entities can re-occur in responses, the value of
information slots usually require outside knowledge. In
DCR, since it already manages to recommend the venue, the
slot values are obtained via the venue information through
a simple post-process.

For the final ranking of methods, we find it in general
accord with the Fluency and Informativeness score trends.
The DCR is ranked as the best method by our evaluators,
followed by the Mem2Seq method. It actually points out a
future direction to enhance our method. Due to the frequent
“re-use” phenomenon in dialogs, the dialog context is im-
portant to model. To encode it into vector representation as
in HRED is not sufficient, direct incorporation of the tokens
as in the Mem2Seq method opens a new auxiliary road.

4.3 Analysis on Components

In this subsection, we explore the performance and con-
tribution of the major components in our design. We first
evaluate the global topic control component. We showcase
the learned topic words, the stop word indicator prediction
results and topic distribution of some example dialogs.
Then, we explore the recommendation component. We com-
pare the GCN-based recommender with several state-of-the-
art recommendation methods and provide the results.

TABLE 2: Four representative topics from the global topic
control component.

Restaurant Hotel Attraction Taxi

restaurant hamilton region runs
eastern guesthouse shopping vehicle

cantonese convenient modern departures
appeal stayed fabulous campus

vegetarian aylesbray world birmingham
menu warkworth churchhill arriveby

eritrean accommodation christ driving
caribbean arrangements shopping causeway

4.3.1 Topic Control of Dialogues

Here we evaluate the performance of the global topic control
component. At first, we show whether the learned topic
words are coherent. We run the component on our dataset
with the total topic number K set to 20. To give a clear view,
we show several representative topic words in Table 2. The
first row entries indicate the estimated topics for their corre-
sponding column of topic words, where these topic words
are top-ranked ones within each column group. Generally
speaking, we observe that words are grouped together and
the top-ranked words show certain topic meanings within
each group.

0%
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20%
30%
40%
50%
60%
70%
80%
90%
100%

topic1contribution HRED1contribution

Fig. 6: Analysis of the learned stop word indicators.

Since stop words largely affect the performance of our
global topic control component, we also show the analysis
of the stop word indicator l. Some examples are shown in
Figure 6. As can be seen, the learned indicators correspond
to the human intuition, and help to coordinate the contri-
bution of the global topic part and the local syntactic part
while generating responses.

To show whether the global topic control component
correctly captures the overall topic distribution of dialog
sessions, we plot the topic distribution θ of dialogs as shown
in Figure 7. Two example dialog session are presented, and
both of them are paired with the learned topic distribution.
In the first example, the user asks the agent to book a table
in a cheap Indian restaurant first, then to recommend an
attraction in the center of town. There are two sub-tasks
involved during the dialog session. Accordingly, the global
topic control component picks up two topics successfully. By
observing the top-ranked topic words for each topic indica-
tors, we find that the picked topic 9 refers to restaurant while
topic 5 refers to attraction. It demonstrates the effectiveness
of our topic control. Similarly, in the second example, the
user first wants to find a hotel and then book the train
tickets. There are also two sub-tasks involved in the dialog.
Thus, two topics are picked up by the model. We observe
that topic 10 corresponds to hotel and topic 19 corresponds
to train.

4.3.2 Venue Recommendation Analysis

In this subsection, we analysis our GCN-based venue rec-
ommendation component in detail. The common user-item
interaction situation is abstracted from the dialogs by treat-
ing the dialog contexts as representations of users and venue
entities as items. This scenario is used in the NCF method.
For ReDial, a user-based autoencoder for collaborative filter-
ing (U-Autorec) is leveraged where venue entities appeared
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Are there any cheap Indian restaurants available?
Definitely! I have 3 in the center and 1 in the north. I recommend Kohinoor, at 74 Mill Road City Centre.
Can you book a table for me there? Wednesday at 18:30, please, and I'll be dining solo.
Great! Your booking for Kohinoor was successful. The reference number is XJBRHRDC. Is there anything 
else I can do to help?
Yes, I am also looking for somewhere to go in the centre of town.
What type of attraction do you want?
What would you suggest?
I would suggest visiting one of the famous colleges.
I need a college in the centre of town.
We have thirteen to chose from! All but three are free. Would you like me to list them for you?
Which one would you suggest and I need the postcode.
I would recommend Christ's College. It's free to visit.
Could I have their postcode please?
Christ's College 's post code is cb23bu.
Thank you, that is all the information I need.
You are welcome, please contact us if we can help you with anything else.

U:
A:
U:
A:

U:
A:
U:
A:
U:
A:
U:
A:
U:
A:
U:
A:

I am looking for a hotel, Carolina Bed and Breakfast.
Sure, I have it right here. Its a moderate priced guesthouse with a 4 star rating, free internet and parking. 
Phone number is 01223247015 can I book it for you?
No, that is all for now.
Ok. I can also help with restaurant, train or taxi reservations. Do you need any of these?
I am needing a train to arrive in cambridge by 14:45.
What day did you need a train for? Also, where will you be departing from?
I want to travel on Tuesday. I'm coming from Broxbourne to Cambridge.
TR8199 matches your criteria. It leaves at 13:32 on tuesday. Would you like to book this train?
As long as it arrives by 14:45, then it's good. Can you book it for 7 people?
It arrives at 14:32. Your reference number is R6MSYW4P and the total fee for 7 people is 125.29 GBP. Is 
there anything else I can help you with?
No, that's everything. Thank you.
You are very welcome!

U:
A:

U:
A:
U:
A:
U:
A:
U:
A:

U:
A:
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Fig. 7: Inferred topic distribution of two example dialog sessions. It shows that some of the topics have been picked
up depending on the dialog content.

in the same dialog session are extracted to form the entity
vector.

TABLE 3: Performance comparison of recommenders.

Methods ReDial NCF GCN-based

Top-1 Accuracy 0.1065 0.1882 0.2420

The results are shown in Table 3. Since often only the
top item is leveraged in the dialogs, we report the Top-1
accuracy here. It shows that the GCN-based recommender
component achieves better performance as compared to
ReDial and NCF methods. For the ReDial recommender, it
projects the entity appearance vector v of each dialog session
into a smaller vector space, then retrieve a new entity vector
v′ with same dimension to minimize the difference between
them. It only models the co-occurrence relationship among
entities. The entity information and the dialog context in-
formation are largely ignored. At the same time, the entity
co-occurrence matrix formed via training dialog sessions is
rather sparse. These factors together lead to its relatively
weak performance. Regarding the NCF method, the dialog
contexts are gathered via HRED to form vector represen-
tations of users. We adopt a multi-layer perceptron (MLP)
to learn the interaction between user and item features.
Still, the various relationships between venue entities are
not modeled. On the contrary, the GCN-based recommender
component in DCR manages to handle all the three evidence
sources — the venue information, relations between them
and the match to dialog context.

5 CONCLUSION

In order to build an intelligent conversational agent in travel
domain, we proposed a deep conversational recommender
to answer various user queries. It is equipped with a global
topic control component to adaptively generate within-
topic responses based on the dialog context topics, which
narrows down the generation of tokens in decoding. At
the same time, a graph convolutional network based rec-
ommender manages to pop venues by modeling the venue
information, relations between them and the match to dialog
context. Based on the results from the two components,
the final response is generated by incorporating them via
a pointed integration mechanism. We systematically evalu-
ated the proposed method on a large conversational dataset
in travel. Experimental results showed that the proposed
DCR method outperformed a wide range of baselines and
demonstrated the effectiveness of it in generating fluent and
informative responses.

In future, we will continue our work in two directions.
First, we will explore the “re-use” phenomenon to further
boost the performance of response generation. Second, we
will try to leverage extra venue adoption data from travel
e-commerce sites to enhance the recommendation perfor-
mance.
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